共查询到20条相似文献,搜索用时 0 毫秒
1.
A compact tubular sensor based on NASICON (sodium super ionic conductor) and V2O5-doped TiO2 sensing electrode was designed for the detection of SO2. In order to reduce the size of the sensor, a thick-film of NASICON was formed on the outer surface of a small Al2O3 tube; furthermore, a thin layer of V2O5-doped TiO2 with nanometer size was attached on the NASICON as a sensing electrode. This paper investigated the influence of V2O5 doping and sintering temperature on the characteristics of the sensor. The sensor attached with 5 wt% V2O5-doped TiO2 sintered at 600 °C exhibited excellent sensing properties to 1–50 ppm SO2 in air at 200–400 °C. The EMF value of the sensor was almost proportional to the logarithm of SO2 concentration and the sensitivity (slope) was −78 mV/decade at 300 °C. It was also seen that the sensor showed a good selectivity to SO2 against NO, NO2, CH4, CO, NH3 and CO2. Moreover, the sensor had speedy response kinetics to SO2 too, the 90% response time to 50 ppm SO2 was 10 s, and the recovery time was 35 s. On the basis of XPS analysis for the SO2-adsorbed sensing electrode, a sensing mechanism involving the mixed potential at the sensing electrode was proposed. 相似文献
2.
The authors present an ab initio study of NO2 and SO2 chemisorption onto non-polar ZnO and ZnO surfaces with the aim of providing theoretical hints for further developments in gas sensors. From first principles calculations (DFT-GGA approximation), the most relevant surface reduction scenarios are analyzed and, subsequently, considered in the chemisorption study. First, calculations indicate that NO2 adsorbs avidly onto Zn surface atoms. This is compatible with the oxidizing character of NO2. Second, results also explain the sensor poisoning by SO2 adsorption (since this molecule competes with NO2 for the same adsorption sites) and indicate that poisoning can only be reverted at typical operation temperatures (T ≤ 700 °C) in the case of stoichiometric ZnO surfaces. 相似文献
3.
Eric R. MacamAuthor VitaeBryan M. BlackburnAuthor Vitae Eric D. WachsmanAuthor Vitae 《Sensors and actuators. B, Chemical》2011,157(2):353-360
In order to further understand the different contributions to NOx sensing mechanism as well as the importance of electrode geometry, solid state potentiometric sensors with varying La2CuO4 sensing electrode thicknesses were studied. These sensors (with a Pt counter electrode) showed a dependence of NO2 sensitivity which decreased with increasing thickness in the temperature range of 550-650 °C. They also showed NO sensitivity that was independent of thickness at 400 °C and 600 °C, but varied at temperatures between. This behavior was attributed to multiple mechanistic contributions explained by Differential Electrode Equilibria. 相似文献
4.
This paper presents the ability of electrostatic sprayed tin oxide (SnO2) and tin oxide doped with copper oxide (1, 2, and 4 at.% Cu) films to detect different pollutant gases, i.e., H2S, SO2, and NO2. The influence of a copper oxide dopant on the SnO2 morphology is studied using scanning electron microscopy (SEM) technique, which reveals a small decrease in the porosity and particle size when the amount of dopant is increased. The sensing properties of the SnO2 films are greatly improved by doping, i.e., the Cu-doped SnO2 films have large response to low concentration (10 ppm) of H2S at low operating temperature (100 °C). Furthermore, no cross-sensitivity to 1 ppm NO2 and 20 ppm SO2 is observed. Among the studied films, the 1 at.% Cu-doped SnO2 layer is the most sensitive in the detection of all the studied gases. 相似文献
5.
Shang-Wei TsaiAuthor VitaeJin-Chern ChiouAuthor Vitae 《Sensors and actuators. B, Chemical》2011,152(2):176-182
In situ SiO2-doped SnO2 thin films were successfully prepared by liquid phase deposition. The influence of SiO2 additive as an inhibitor on the surface morphology and the grain size for the thin film has been investigated. These results show that the morphology of SnO2 film changes significantly by increasing the concentration of H2SiF6 solution which decreases the grain size of SnO2. The stoichiometric analysis of Si content in the SnO2 film prepared from various Si/Sn molar ratios has also been estimated. For the sensing performance of H2S gas, the SiO2-doped Cu-Au-SnO2 sensor presents better sensitivity to H2S gas compared with Cu-Au-SnO2 sensor due to the fact that the distribution of SiO2 particles in grain boundaries of nano-crystallines SnO2 inhibited the grain growth (<6 nm) and formed a porous film. By increasing the Si/Sn molar ratio, the SiO2-doped Cu-Au-SnO2 gas sensors (Si/Sn = 0.5) exhibit a good sensitivity (S = 67), a short response time (t90% < 3 s) and a good gas concentration characteristic (α = 0.6074). Consequently, the improvement of the nano-crystalline structures and high sensitivity for sensing films can be achieved by introducing SiO2 additive into the SnO2 film prepared by LPD method. 相似文献
6.
基于对整个生产流程的管控,使硫铁矿生产硫酸尾气的SO2浓度达标排放,提出运用GA-ELM对制酸尾气SO2浓度进行建模预测.在硫铁矿制酸的生产过程中采集对尾气SO2浓度影响较大的关键点参数,运用GA-ELM神经网络对烟气制酸尾气SO2浓度进行预测.该方法在某厂实际检验,其预测结果与实际数据吻合度较高,对于调整和优化工艺指标和尾气达标排放起到很好的指导作用. 相似文献
7.
8.
Potentiometric oxygen sensor was fabricated and applied to detect several volatile organic compounds (VOCs; acetic acid, methylethylketone (MEK), ethanol, benzene, toluene, o- and p-xylene) at sub-ppm levels in the temperatures range of 400–500 °C. The electromotive force (EMF) linearly changed with the logarithm of VOC concentration. Especially for ethanol and MEK, the sensitivity and EMF at 1 ppm were distinctly lowered for the sensor with the SmFeO3 coated Pt working electrode. It seems that ethanol and MEK were more easily oxidized on the SmFeO3 surface than the other VOCs. A discriminative detection of ethanol and MEK apart from the others could be achieved with the combination of two types of the sensors, Pt|8YSZ|Pt(ref.) and SmFeO3/Pt|8YSZ|Pt(ref.). 相似文献
9.
Eric R. MacamAuthor VitaeBryan M. BlackburnAuthor Vitae Eric D. WachsmanAuthor Vitae 《Sensors and actuators. B, Chemical》2011,158(1):304-312
The intent of this work is to look at the effects of varying the La2CuO4 electrode area and the asymmetry between the sensing and counter electrode in a solid state potentiometric sensor with respect to NOx sensitivity. NO2 sensitivity was observed at 500-600 °C with a maximum sensitivity of ∼22 mV/decade [NO2] observed at 500 °C for the sensor with a La2CuO4 electrode area of ∼30 mm2. The relationship between NO2 sensitivity and area is nearly parabolic at 500 °C, decreases linearly with increasing electrode area at 600 °C, and was a mixture of parabolic and linear behavior 550 °C. NO sensitivity varied non-linearly with electrode area with a minima (maximum sensitivity) of ∼−22 mV/decade [NO] at 450 °C for the sensor with a La2CuO4 electrode area of 16 mm2. The behavior at 400 °C was similar to that of 450 °C, but with smaller sensitivities due to a saturation effect. At 500 °C, NO sensitivity decreases linearly with area.We also used electrochemical impedance spectroscopy (EIS) to investigate the electrochemical processes that are affected when the sensing electrode area is changed. Changes in impedance with exposure to NOx were attributed to either changes in La2CuO4 conductivity due to gas adsorption (high frequency impedance) or electrocatalysis occurring at the electrode/electrolyte interface (total electrode impedance). NO2 caused a decrease in high frequency impedance while NO caused an increase. In contrast, NO2 and NO both caused a decrease in the total electrode impedance. The effect of area on both the potentiometric and impedance responses show relationships that can be explained through the mechanistic contributions included in differential electrode equilibria. 相似文献
10.
Peng SunAuthor VitaeYanfeng SunAuthor Vitae Jian MaAuthor VitaeLu YouAuthor Vitae Geyu LuAuthor Vitae Wuyou FuAuthor VitaeMinghui LiAuthor Vitae Haibin YangAuthor Vitae 《Sensors and actuators. B, Chemical》2011,155(2):606-611
Large-scale novel core-shell structural SnO2/ZnSnO3 microspheres were successfully synthesized by a simple hydrothermal method with the help of the surfactant poly(vinyl pyrrolidone) PVP. The as-synthesized samples were characterized using X-ray powder diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and high-resolution transmission electron microscopy (HRTEM). The results indicate that the shell was formed by single crystalline ZnSnO3 nanorods and the core was formed by aggregated SnO2 nanoparticles. The effects of PVP and hydrothermal time on the morphology of SnO2/ZnSnO3 were investigated. A possible formation mechanism of these hierarchical structures was discussed. Moreover, the sensor performance of the prepared core-shell SnO2/ZnSnO3 nanostructures to ethanol was studied. The results indicate that the as-synthesized samples exhibited high response and quick response-recovery to ethanol. 相似文献
11.
The effects of the crystallographic orientation on the H2 gas sensing properties were investigated in highly oriented polycrystalline Pd-doped SnO2 films, which were obtained using rf magnetron sputtering of a Pd (0.5 wt%)-SnO2 target on various substrates (a-, m-, r-, and c-cut sapphire and quartz). All the films had a similar thickness (110 nm), root-mean-square (rms) roughness (1.3 nm), surface area, and chemical status (O, Sn, and Pd). However, the orientation of the films was strongly affected by the orientation of the substrates. The (1 0 1), (0 0 2), and (1 0 1) oriented films were grown on (a-cut), (m-cut), and (r-cut) Al2O3 substrates, respectively, and rather randomly oriented films were deposited on (0 0 0 1) (c-cut) Al2O3 and quartz substrates. In addition, the oriented Pd-doped SnO2 films were highly textured and had in-plane orientation relationships with the substrates similar to the epitaxial films. The (1 0 1) Pd-doped SnO2 films on and Al2O3 showed a considerably higher H2 sensitivity, and their gas response decreased with increasing sensing temperature (400–550 °C). The films deposited on and (0 0 0 1) Al2O3 showed the maximum sensitivity at 500 °C. The comparison of the H2 gas response between undoped and Pd-doped SnO2 films revealed that the Pd-doping shifted the optimum sensing temperature to a lower value instead of improving the gas sensitivity. 相似文献
12.
In-Sung Joong-Ki Sun-Jung Ki-Young Jae-Hong Byeong-Kwon Jong-Heun 《Sensors and actuators. B, Chemical》2009,142(1):105-110
The CuO-functionalized SnO2 nanowire (NW) sensors were fabricated by depositing a slurry containing SnO2 NWs on a polydimethylsiloxane (PDMS)-guided substrate and subsequently dropping Cu nitrate aqueous solution. The CuO coating increased the gas responses to 20 ppm H2S up to 74-fold. The Ra/Rg value of the CuO-doped SnO2 NWs to 20 ppm H2S was as high as 809 at 300 °C, while the cross-gas responses to 5 ppm NO2, 100 ppm CO, 200 ppm C2H5OH, and 100 ppm C3H8 were negligibly low (1.5–4.0). Moreover, the 90% response times to H2S were as short as 1–2 s at 300–400 °C. The selective detection of H2S and enhancement of the gas response were attributed to the uniform distribution of the sensitizer (CuO) on the surface of the less agglomerated network of the SnO2 NWs. 相似文献
13.
K.B. JineshAuthor Vitae V.A.T. DamAuthor VitaeJ. SwertsAuthor Vitae C. de NooijerAuthor VitaeS. van ElshochtAuthor Vitae S.H. BrongersmaAuthor VitaeM. Crego-CalamaAuthor Vitae 《Sensors and actuators. B, Chemical》2011,156(1):276-282
Room temperature detection of CO2 using metal-insulator-silicon (MIS) devices is reported. These devices comprise atomic layer deposited La2O3 thin films as the gas-sensitive dielectric layer and Pt, Pt/Ta and Al as the electrodes. Physical mechanisms that lead to the detection of CO2 at room temperature are discussed. 相似文献
14.
Yangong ZhengAuthor VitaeJing WangAuthor Vitae Pengjun YaoAuthor Vitae 《Sensors and actuators. B, Chemical》2011,156(2):723-730
Formaldehyde is a kind of hazardous gases dangerous to human health. Hence, gas sensor is an essential device to monitor formaldehyde in air, especially in indoor ambient. Semiconductor metal oxides are studied as gas-sensing material to detect most of key gases for decade years. For the purpose of actual application and meeting a variety of conditions, diverse additives added into host material are expected to improve the performance of gas sensors. The formaldehyde gas-sensing characteristics of undoped and NiO-doped SnO2 (NSO) nanofibers synthesized via a simple electrospinning method were investigated in this study. It is noticed that the addition of NiO causes the distortion at the surface of SnO2 nanofibers, which is responsible to adjust activation energy, grain sizes and chemical states of host material. The sensors fabricated from NSO nanofibers exhibited good formaldehyde sensing properties at operating temperature 200 °C, and the minimum-detection-limit was down to 0.08 ppm. The response time and recovery time of the sensors were about 50 s and 80 s to 10 ppm formaldehyde, respectively. The sensor shows a good long-term stability in 90 days. The simple preparation and excellent properties significantly advance the viability of electrospun nanofibers as gas sensing materials. The sensing mechanisms of NSO nanofibers to formaldehyde were discussed. The results indicated that NSO nanofibers could be used as a candidate to fabricate formaldehyde sensors in practice. 相似文献
15.
Ki-Young DongAuthor VitaeJoong-Ki ChoiAuthor Vitae In-Sung HwangAuthor VitaeJin-Woo LeeAuthor Vitae Byung Hyun KangAuthor VitaeDae-Jin HamAuthor Vitae Jong-Heun LeeAuthor VitaeByeong-Kwon JuAuthor Vitae 《Sensors and actuators. B, Chemical》2011,157(1):154-161
Gas sensors were designed and fabricated using oxide nanofibers as the sensing materials on micro platforms using micromachining technology. Pure and Pt doped SnO2 nanofibers were prepared by electrospinning and their H2S gas sensing characteristics were subsequently investigated. The sensing temperatures of 300 and 500 °C could be attained at the heater powers of 36 and 94 mW, respectively, and the sensors showed high and fast responses to H2S. The responses of 0.08 wt% Pt doped SnO2 nanofibers to 4-20 ppm H2S, were 25.9-40.6 times higher than those of pure SnO2 nanofibers. The gas sensing characteristics were discussed in relation to the catalytic promotion effect of Pt, nano-scale morphology of electrospun nanofibers, and sensor platform using micro heater. 相似文献
16.
Yu-Jin ChenAuthor Vitae Gang XiaoAuthor VitaeTie-Shi WangAuthor Vitae Fan ZhangAuthor VitaeYang MaAuthor Vitae Peng GaoAuthor VitaeEndi ZhangAuthor Vitae Zhi XuAuthor VitaeQiu-hong LiAuthor Vitae 《Sensors and actuators. B, Chemical》2011,156(2):867-874
Crystalline CeO2/TiO2 core/shell nanorods were fabricated by a hydrothermal method and a subsequent annealing process under the hydrogen and air atmosphere. The thickness of the outer shell composed of crystal TiO2 nanoparticles can be tuned in the range of 5-11 nm. The crystal core/shell nanorods exhibited enhanced gas-sensing properties to ethanol vapor in terms of sensor response and selectivity. The calculated sensor response based on the change of the heterojunction barrier formed at the interface between CeO2 and TiO2 is agreed with the experimental results, and thus the change of the heterojunction barrier at different gas atmosphere can be used to explain the enhanced ethanol sensing properties. 相似文献
17.
Chunbae LimAuthor VitaeWen WangAuthor Vitae Sangsik YangAuthor VitaeKeekeun LeeAuthor Vitae 《Sensors and actuators. B, Chemical》2011,154(1):9-16
A 440 MHz wireless and passive surface acoustic wave (SAW)-based multi-gas sensor integrated with a temperature sensor was developed on a 41° YX LiNbO3 piezoelectric substrate for the simultaneous detection of CO2, NO2, and temperature. The developed sensor was composed of a SAW reflective delay lines structured by an interdigital transducer (IDT), ten reflectors, a CO2 sensitive film (Teflon AF 2400), and a NO2 sensitive film (indium tin oxide). Teflon AF 2400 was used for the CO2 sensitive film because it provides a high CO2 solubility, with good permeability and selectivity. For the NO2 sensitive film, indium tin oxide (ITO) was used. Coupling of mode (COM) modeling was conducted to determine the optimal device parameters prior to fabrication. Using the parameters determined by the simulation results, the device was fabricated and then wirelessly measured using a network analyzer. The measured reflective coefficient S11 in the time domain showed high signal/noise (S/N) ratio, small signal attenuation, and few spurious peaks. The time positions of the reflection peaks were well matched with the predicted values from the simulation. High sensitivity and selectivity were observed at each target gas testing. The obtained sensitivity was 2.12°/ppm for CO2 and 51.5°/ppm for NO2, respectively. With the integrated temperature sensor, temperature compensation was also performed during gas sensitivity evaluation process. 相似文献
18.
In-Sung HwangAuthor VitaeEui-Bok LeeAuthor Vitae Sun-Jung KimAuthor VitaeJoong-Ki ChoiAuthor Vitae Jung-Ho ChaAuthor VitaeHo-Jun LeeAuthor Vitae Byeong-Kwon JuAuthor VitaeJong-Heun LeeAuthor Vitae 《Sensors and actuators. B, Chemical》2011,154(2):295-300
The SnO2 nanowires (NWs) network gas sensors were fabricated on a micro-electrode and heater suspended in a cavity. The sensors showed selective detection to C2H5OH at a heater power during sensor operation as low as 30-40 mW. The gas response and response speed of the SnO2 NWs sensor to 100 ppm C2H5OH were 4.6- and 4.7-fold greater, respectively, than those of the SnO2 nanoparticles (NPs) sensor with the same electrode geometry. The reasons for these enhanced gas sensing characteristics are discussed in relation to the sensing materials and sensor structures. 相似文献
19.
针对现有SO2浓度预测方法中存在的污染物来源和影响因素认识不统一、小样本数据敏感、易于陷入局部最优等问题,文中提出了基于模糊时序和支持向量机的高速公路SO2浓度预测算法,为搭建高速公路环境健康监测系统提供了可靠的理论支持.该方法依据SO2浓度的季节变动规律,以季节作为时间序列,以24h为粒化窗宽,通过高斯核函数提取原始样本数据的特征值,输入支持向量机训练模型,并利用k重交叉验证法结合网格划分优化模型参数.文中应用该方法建立了SO2浓度预测模型,并以2014年4月至2015年3月山西省太旧高速公路某监测点SO2小时浓度监测值为样本数据,在MATLAB平台下应用LIBSVM工具实现了计算过程.结果表明,基于模糊时序和支持向量机的高速公路SO2浓度预测算法不受机理性理论研究的限制,支持小样本学习,非线性拟合效果好,泛化能力强. 相似文献
20.
Appreciable changes in resistance of polycrystalline nanosized CuNb2O6 upon exposure to reducing gases like hydrogen, liquefied petroleum gas (LPG) and ammonia in ambient atmosphere recognize the material as a gas sensor. Nanosized CuNb2O6 synthesized by thermal decomposition of an aqueous precursor solution containing copper nitrate, niobium tartrate and tri-ethanol amine (TEA), followed by calcination at 700 °C for 2 h, has been characterized using X-ray diffraction (XRD) study, transmission electron microscopy (TEM), field-emission scanning electron microscope (FESEM), energy dispersive X-ray (EDX) analysis and Brunauer–Emmett–Teller (BET) surface area measurement. The synthesized CuNb2O6 exhibits monoclinic structure with crystallite size of 25 nm, average particle size of 25–40 nm and specific surface area of 55 m2 g−1. 相似文献