首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 218 毫秒
1.
溶剂萃取法从石煤酸浸液中提取V_2O_5的新工艺研究   总被引:1,自引:1,他引:0  
研究了新型萃取试剂从酸浸液中提取五氧化二钒的新工艺。结果表明:有机相(A)15%+煤油75%+添加剂10%组成的有机溶剂萃取率为99.55%;用80g/L氯化钠作反萃剂,反萃率为98.49%。酸浸液经萃取—反萃后,水相五氧化二钒浓度从9.8g/L富集到115.30g/L,并且主要杂质均被除去,有利于后续提钒工艺地进行。  相似文献   

2.
湖南某黑钨渣硫酸浸出液(硫酸的浓度为1.8 mol/L)的钪、锆元素含量分别为48.18、138.00 mg/L,为消除锆对萃取钪的影响,在萃取钪前以N235和TBP为复合萃取剂进行了除锆预萃取试验。结果表明:1在复合萃取剂N235、TBP与磺化煤油的体积比为15∶15∶70,有机相与水相相比为1.5∶1,萃取时间为5 min,萃取温度为25℃,萃取振荡频率为120 r/min情况下进行单级萃取,对应的锆、钪萃取率分别为92.03%和0.96%;在硫酸溶液浓度为5mol/L、反萃相比为3∶1、反萃时间为30 min、反萃温度为25℃、振荡频率为180 r/min情况下进行3级反萃,对应的锆、钪反萃率分别为99.23%和98.22%。因此,该工艺可高效地分离锆、钪。2再生有机相对萃原液中锆的萃取率可达91.97%,与新配制萃取剂效果接近,说明再生萃取剂可以循环利用。  相似文献   

3.
采用自制的胺类萃取剂N1633作萃取剂, 考察了其在钨萃取冶金中的性能。当有机相组成为40%N1633+40%异辛醇+磺化煤油(体积比), 在pH=8.27、相比(O/A)为1∶1、振荡时间10 min、萃取温度25 ℃时, 对WO3含量116.25 g/L的钨酸钠溶液进行萃取, 单级萃取率大于99%。绘制了N1633的萃取等温线, 经过三级萃取饱和容量达到109.03 g/L。用2.5 mol/L的氨水对负载有机相进行反萃, 相比2.5∶1时, 反萃液中WO3浓度达到174.31 g/L。绘制了负载有机相的反萃等温线, 理论上以相比1.25∶1进行四级逆流萃取可将有机相中的钨基本反萃, 反萃液中WO3的饱和反萃浓度达到202.82 g/L。采用0.6 mol/L的硫酸以相比2∶1进行酸化再生后, N1633仍具有良好的萃取性能。  相似文献   

4.
为了解决目前工业萃取剂对Cu2+选择性差以及对Zn2+萃取能力差的问题, 合成了一种新型萃取剂MPPE, 并考察了由MPPE组成的有机相在氨溶液体系中对Cu2+、Ni2+、Co2+和Zn2+的萃取与反萃性能。结果表明, 在萃取剂MPPE浓度0.06 mol/L、总铵浓度1.2 mol/L、相比(O/A)1/1、混合时间5 min、pHeq=6.44条件下, Cu2+萃取率达到95.8%, 而Ni2+、Co2+和Zn2+萃取率分别为2.8%、3.7%和8.1%, 分离系数βCu/Ni、βCu/Co和βCu/Zn分别高达666.20、508.42和219.55。而当其他萃取条件不变, 将平衡pH值调为8.23时, βZn/Ni和βZn/Co都达最大值, 分别为137.90和74.20。在硫酸浓度1 mol/L、反萃时间6 min以及反萃相比1/1条件下对铜和锌的负载有机相进行反萃, 锌和铜离子反萃率均在97%以上。  相似文献   

5.
以废石化催化剂碱性浸出液为研究对象, 进行了N263三级逆流萃取+超声波一级NH4Cl反萃+三级NaOH、NaCl逆流反萃工艺研究。结果表明, 优化萃取条件为: 初始pH值8.5、萃取体系30%N263+5%仲辛醇+65%磺化煤油、萃取时间3 min、相比O/A=1∶1; 一段反萃优化条件为: NH4Cl浓度2.0 mol/L、反萃相比O/A=5∶2、超声波功率500 W、反萃时间2 min; 二段反萃优化条件为: NaOH浓度1.0 mol/L、NaCl浓度0.5 mol/L、反萃相比O/A=3∶2、反萃时间3 min。以上优化条件下对浸出液进行钒的提取, 钒萃取率和反萃率分别为99.15%和99.36%, 对一段和二段反萃液进行钒产品回收, 可分别获得高纯V2O5产品(>99.9%)和普通V2O5产品(>99%)。  相似文献   

6.
P507从硫酸体系中萃取镓的研究   总被引:3,自引:0,他引:3  
基于P507诸多优点及镓提取现状, 对P507从硫酸体系中萃取镓进行了研究, 分别考察了料液酸度、萃取剂浓度、时间、浓度、温度等因素对萃取与反萃的影响并绘制等温线, 结果表明, 在最佳条件下, 采用15%P507(体积分数)+磺化煤油作为有机相, 按相比O/A=1∶4, 经过3级逆流萃取, 萃取率可达到98.56%, 负载用60 g/L H2SO4溶液反萃, 按相比O/A=5∶1, 经过5级逆流反萃, 反萃率达98.02%, 镓富集近20倍。  相似文献   

7.
采用P204-仲辛醇皂化萃取体系从金精矿氰化尾渣酸浸液中萃取分离铁, 初步研究其萃取机理, 并考察了萃取体系、P204浓度和料液初始pH值、含铁浓度及加入介质NaCl对Fe(Ⅲ)萃取的影响以及相比(O/A)、H2SO4浓度对Fe(Ⅲ)反萃的影响。实验结果表明:P204和仲辛醇对酸浸液中的Fe(Ⅲ)具有一定协同萃取效应, 仲辛醇作为萃取体系中的相转移试剂, 尤其能改善铁的反萃效率。同时, 采用氨水皂化后的萃取体系铁的提取率显著提高。P204、仲辛醇以及260#溶剂油以1∶1∶2的体积比混合作为萃取体系, 在相比为2的条件下, 调整含铁10.18 g/L的原酸浸液的pH值接近2.0, 经过1级萃取, 萃余液中含铁低于0.25 g/L; 以25%(体积分数)的H2SO4反萃, 有机相中的铁基本被反萃完全。通过萃取和反萃, 铁离子溶液中杂质含量大大减少, 尤其是砷的含量。  相似文献   

8.
研究用胺类萃取剂N235从某铜冶炼厂烟灰处理过程高砷高酸硫酸铜溶液萃取镉。结果表明,在溶液含0.2 mol/L氯离子条件下,以20%N235+5%仲辛醇+75%磺化煤油为萃取剂,4 mol/L的氨水为反萃剂,在适宜相比条件下,三级逆流萃取镉萃取率可达99.4%,七级逆流反萃镉反萃率可达96%,获得含镉为6.77 g/L的反萃液,实现镉与铜砷等元素的高效分离以及镉的富集。  相似文献   

9.
Mac10 铜萃取剂的性能研究   总被引:4,自引:0,他引:4  
采用国产化工原料合成了Mac10 铜萃取剂, 进行了萃取剂用量、有机相与无机相相比(O/A)、萃取平衡pH 值、萃取动力学、萃取热力学、反萃动力学试验、反萃剂酸度试验。结果表明, Mac10 铜萃取剂具有良好萃取性能, 当萃取剂用量为15%, 相比(O/A)为75%, 萃取平衡pH =3, 萃取时间为3 min, 萃取温度为298 K, 反萃取时间为2 min, 反萃取剂酸度为硫酸浓度180 g/L 时, 萃取率不小于93%, 反萃取率不小于96%, 且水相中Cu2+浓度愈高, Mac10 对铜的萃取性能愈好。  相似文献   

10.
采用D2EHPA-TBP-磺化煤油混合体系萃取-硫酸反萃-酸性铵盐沉钒方法从石煤酸浸液中分离、回收五氧化二钒。结果表明:在酸性介质中钒萃取率取决于溶液pH值,当溶液初始pH值≤2.5,钒萃取率高,杂质离子不发生水解沉淀,利于钒的分离、富集。以10%D2EHPA、5%TBP、85%磺化煤油的有机相做萃取剂,在相比为1∶1,溶液初始pH值2.45的条件下,经7级逆流萃取,钒的萃取率为96.7%。以1.5mol/L的硫酸溶液做反萃取剂,在相比(O/A)为5∶1的条件下,负载有机相经3级逆流反萃取,钒的反萃率大于99%,采用酸性铵盐沉钒,在550℃条件下煅烧脱氨后得到的五氧化二钒产品纯度为99.01%。  相似文献   

11.
TBP-MIBK协同萃取高硫高砷金精矿浸出液中的铁   总被引:2,自引:2,他引:0  
周勇  李登新 《矿冶工程》2009,29(1):74-77
利用TBP-MIBK混合体系从金精矿硝酸浸出液的盐酸介质中协同萃取铁, 并研究其萃取机理。通过考察初始料液浓度、盐酸浓度、相比(Vorg/Vaq)及混合体系对铁的萃取率和分配系数的影响, 得出萃合物的组成为HFeCl4·3TBP-MIBK。实验结果还表明: 在初始料液浓度18.09 g/L, 盐酸浓度6.14 mol/L, 有机相组成TBP∶MIBK为7∶3, 相比1∶1条件下, 铁的萃取率达到99.32%, 萃余液中含铁低于0.1 g/L。以蒸馏水反萃, 含铁17.97 g/L的有机相在相比为1∶2时, 铁基本上被反萃完全。通过萃取和反萃, 铁离子溶液中杂质含量大大降低。  相似文献   

12.
采用硫酸浸出-萃取-反萃工艺流程回收电镀污泥中的铜。运用MATLAB拟合了1 mol/L硫酸体系中铜的浸出动力学模型,表明该浸出过程为扩散和表面反应共同控制。在硫酸浓度1 mol/L、液固比15∶1条件下浸出10 min,铜浸出率达到90%。采用萃取-反萃取的方式回收浸出液中的Cu2+,以Mextral® 984H为萃取剂、Mextral® DT100为稀释剂,在溶液pH=2、萃取时间30 min、O/L相比1∶1、萃取剂浓度10%条件下萃取,铜萃取率可达99%;O/L相比1∶1、反萃取时间30 min,用25%的硫酸溶液进行反萃取,铜反萃取率可达95%。此工艺流程铜总回收率可达85%,实现了铜的高效回收。  相似文献   

13.
以P204为萃取剂、硫酸溶液为反萃剂,在室温下对贵州某钼镍钒多金属矿石的镍钒浸出液进行钒的萃取-反萃取试验,确定了萃取时适宜的工艺参数为母液pH=2.5,有机相中P204、TBP、磺化煤油的体积比=20∶5∶75,相比(O/A)=1∶2,萃取时间5 min,反萃取时适宜的工艺参数为硫酸溶液浓度2 mol/L、相比(O/A)=2∶1、反萃时间4 min。在所确定的工艺参数下进行5级萃取-反萃取,钒的总萃取率达98.7%、总反萃率达99.8%、总回收率达98.5%。  相似文献   

14.
废印刷线路板微生物浸出液中铜的选择性萃取   总被引:3,自引:0,他引:3  
张承龙  王景伟  白建峰  关杰 《金属矿山》2009,39(10):158-160
对萃取法分离废印刷线路板微生物浸出液中的铜进行了研究。结果表明:选用N902为萃取剂,可很好地选择性萃取浸出液中的铜,在萃取剂浓度为10%,萃取相比为1∶1,萃取搅拌时间为5 min的条件下,铜的萃取率可达99.51%,Cu与Fe的分离系数为2 058;以硫酸溶液为反萃剂对萃取获得的负载有机相进行反萃取,在硫酸溶液浓度为1.8 mol/L,反萃取相比为1∶1,反萃取搅拌时间为5 min的条件下,铜的反萃率可达93.57%。  相似文献   

15.
在高铁生物浸铜液中通入H2S气体, 生成硫化铜渣, 双氧水-硫酸浸出硫化铜渣, 得到硫酸铜溶液, 后经蒸发浓缩、冷却结晶制得硫酸铜。研究结果表明: 当生物浸出液pH=1, 反应温度为30 ℃, 反应时间为3 h时, 在生物浸铜液中通入硫化氢, 铜沉淀率接近100%; 双氧水-硫酸浸出硫化铜渣, 当双氧水与铜物质的量之比为6.4∶1, 反应温度为50 ℃, 液固比为15∶1, 硫酸浓度为3 mol/L, 反应时间为2 h时, 铜浸出率为92.1%; 所得浸出液中硫酸浓度为343.49 g/L, Cu2+浓度为 25.33 g/L, 通过蒸发浓缩、冷却结晶得到纯度为96%的硫酸铜, 其质量达到工业用硫酸铜质量标准(GB437-93)。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号