首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The authors describe an 8-bit, extremely low-power, flash A/D converter LSI for video-frequency image signal processing. This converter uses a shallow-groove-isolated bipolar VLSI technology. It consumes only 150 mW, which is half the amount of the lowest power consumption so far reported. This low level of power consumption is achieved by the use of a comparator circuit, which is newly designed. This converter can digitize video signals of up to 10 MHz at a conversion rate of 30 MHz. A differential gain (DG) error of 1% and a differential phase (DP) error of less than 0.5/spl deg/ were observed.  相似文献   

2.
A 1 V power supply and low-power consumption A/D conversion technique using swing-suppression noise shaping is proposed. This technique makes it possible to power the on chip A/D converter in digital LSI's directly by a one-cell battery, without a dc-dc converter. Experimental results indicated good performance for the RF-to-baseband analog interface of a digital cordless phone. The A/D converter, fabricated with a 0.5 μm CMOS process, operates on a 1 V power supply, has a 10 bit dynamic-range with a 384 ksps sampling speed and consumes only 1.56 mW  相似文献   

3.
A 10 bit CMOS A/D converter with 3 V power supply has been developed for being integrated into system VLSI's. In this A/D converter, redundant binary encoders named “twin encoders” enhance tolerance to substrate noise, together with employing differential amplifiers in comparators. The bias circuit using a replica of the amplifier is developed for biasing differential comparators with 3 V power supply. Subranging architecture along with a multilevel tree decoding structure improves dynamic performance of the ADC at 3 V power supply. The A/D converter is fabricated in double-polysilicon, double-metal, 0.8 μm CMOS technology. The experimental results show that the ADC operates at 20 MS/s and the twin encoders suppress the influence of substrate noise effectively. This ADC has a single power supply of 3 V, and dissipates 135 mW at 20 MS/s operation  相似文献   

4.
GaAs photoconductive switches have been integrated with two parallel 4-bit CMOS analog-to-digital (A/D) converter channels to demonstrate the time-interleaved sampling of wideband signals. The picosecond sampling aperture provided by low-temperature-grown-GaAs metal-semiconductor-metal switches, in combination with low-jitter short-pulse lasers, enables the optically-triggered sampling of electrical signals with tens of gigahertz bandwidth at low to medium resolution. A pair of parallel sampling paths, one for sampling and the second for feedthrough cancellation, generate a differential held signal that is quantized by a low-input capacitance, high-speed flash A/D converter. Dynamic offset averaging is employed to improve converter linearity. An experimental time-interleaved two-channel A/D converter provides about 3.5 effective bits of resolution for inputs up to 40 GHz when tested at an optically-triggered sampling rate of 160 MHz. The sampling rate was limited by the available optical source. Each A/D converter channel operates up to a 640-MHz conversion rate, dissipates 70 mW of power, and occupies an area of 150 /spl mu/m /spl times/ 450 /spl mu/m in a 2.5-V, 0.25-/spl mu/m CMOS technology.  相似文献   

5.
The continuous calibration of high-linearity, highspeed analog/digital converters (ADCs) can minimize system complexity by allowing a single converter to maintain its accuracy over time. This paper introduces a continuous calibration technique for pipelined and successive approximation ADCs that avoids some of the limitations of earlier designs by performing the calibration in the analog domain. The calibration is made transparent to the overall system by employing an extra stage that is calibrated outside of the main converter's operation and periodically substituted for a stage within the main converter. A 12-b, pipelined ADC employing this architecture has been integrated in a 0.5-μm, single-poly, quadruple-metal, 3.3-V CMOS technology. The measured dynamic performance indicates that at a 10-MHz sampling rate, the circuit achieves a peak signal-to-noise-plus-distortion ratio of 67 dB and a total harmonic distortion of -77 dR for a 4.8-MHz input. The total power dissipated by the prototype is 335 mW, and its active area is 3.71×3.91 mm2  相似文献   

6.
A parallel-pipelined A/D converter with an area and power efficient architecture is described. By sharing amplifiers along the pipeline and also completely eliminating the amplifier from the last stage, an 8-b pipeline is realized using just three amplifiers (instead of seven amplifiers with a conventional pipeline architecture). By using two such pipelines in parallel, a 52 Msamples/s prototype A/D converter that is Intended for a switched digital video application has been implemented in a 0.9-μm CMOS technology. The device occupies 15 mm 2 and dissipates 250 mW from a 5 V supply  相似文献   

7.
设计了一种基于A/D和D/A相互转换的音频功率放大器.A/D转换后的数字音频信号经电平匹配和隔离驱动后,控制功率D/A转换电路进行音频还原和功率放大.当转换位数足够时,能基本不失真地还原音频信号.对功率D/A转换输出的阶梯波进行逐级分析,得出开关器件工作频率、器件通态损耗和开关损耗的计算式.利用多级自举方法,减少了驱动电源数目.实验结果表明,这是一种效率较高的音频功率放大器.  相似文献   

8.
A self-calibration technique based upon charge storage on the gate-source capacitance of CMOS transistors is presented. The technique can produce multiple copies of a reference current. Therefore, it is suitable for the calibration of high-resolution D/A (digital/analog) converters which are based upon equal current sources. As the storage capacitor is internal, no external components are required. A calibrated spare current source is used to allow continuous converter operation. This implies that no special calibration cycles are required. To show the capabilities of the calibration technique, it was implemented in a 16-b D/A converter. Measurement results show a total harmonic distortion of 0.0025% at a power consumption of 20 mW and a minimum supply voltage of 3 V. The design was fabricated in a 1.6-μm double-metal CMOS process without special options  相似文献   

9.
An energy-efficient D/A conversion structure combined with a splited unit-capacitor array and an intermittent-sleeping resistor string is presented for low power SAR A/D converter. The energy dissipation and the matching requirement of the D/A conversion network are researched based on Matlab modeling. And its superiority and applicability are proven by the realization of an 8-bit 200kS/s 25.6 μW 65 nm CMOS SAR A/D converter with this proposed D/A structure.  相似文献   

10.
A 4-bit 6-GS/s pipeline A/D converter with 10-way time-interleaving is demonstrated in a 0.18-/spl mu/m CMOS technology. The A/D converter is designed for a serial-link receiver and features an embedded adjustable single-tap DFE for channel equalization. The ISI subtraction of the DFE is performed at the output of each pipeline stage; hence the effective feedback delay requirement is relaxed by 6/spl times/. Code-overlapping of the 1.5-bit pipeline stage along with digital error correction is used to absorb and remove the remainder of the ISI. The measured A/D converter performance at 6-GSamples/s shows 22.5 dB of low-frequency input SNDR for the calibrated A/D converter with /spl plusmn/0.25 LSB and /spl plusmn/0.4 LSB of INL and DNL, respectively. The input capacitance is 170 fF for each A/D converter. The DFE tap coefficient is adjustable from 0 to 0.25 with 6-bits of programmable weight. With a DFE coefficient of 0.2, the measured DFE performance shows 2.5 dB of amplitude boosting for a 3-GHz input sinusoid. The 1.8/spl times/1.6 mm/sup 2/ chip consumes 780 mW of power from a 1.8-V power supply.  相似文献   

11.
A 6-bit 800-MS/s pipelined A/D converter (ADC) achieves SNDR and SFDR of 33.7 dB and 47.5 dB, respectively. Employing voltage-mode open-loop amplifiers in gain stages, global gain control techniques, and two-bank-interleaved architecture, the proposed pipelined A/D converter relaxes stringent design tradeoffs between speed and power. Fabricated in a 0.18-mum CMOS technology, the ADC consumes 105 mW from a 1.8-V power supply while the active area is only 0.5 mm2  相似文献   

12.
An oversampled A/D (analog-to-digital) converter that can be configured as either a sigma-delta converter or an incremental converter is presented. This is an oversampled instrumentation converter that cancels offset and 1/f noise. The converter architecture is based on a mixed analog-digital integrator (MADI) concept. This concept is shown to lead to a very simple and modular architecture. The implemented converter also allows selection of the converter order and the decimation factor in order to find the best tradeoff between resolution, conversion time or bandwidth, and power consumption. As the converter architecture is completely modular, it can rapidly be tailored for a specific application with minimized silicon area. The circuit achieves a resolution of 16 b on a range of ±650 mV and compensates the offset and the even-order harmonics to a nonobservable level  相似文献   

13.
介绍了一种用于数模转换器的电流 电压转换电路。在数模转换器的负载电阻片内集成的情况下 ,利用文中提出的电流 电压转换电路 ,数模转换器实现了要求的宽摆幅电平输出 (全“0”输入时 ,输出低电平 - 3V ;全“1”输入时 ,输出高电平 3 5V)。整个数模转换器电路用 1 2 μm双层金属双层多晶硅n阱CMOS工艺实现。其积分非线性误差为 0 4 5个最低有效位 (LSB) ,微分非线性误差为 0 2LSB ,满摆幅输出的建立时间小于 1μs。该数模转换器使用± 5V电源 ,功耗约为 30mW ,电路芯片面积为 0 4 2mm2 。  相似文献   

14.
A floating-point approach can be used to extend the dynamic range of analog-to-digital (A/D) converters in applications where large signals need not be encoded with a precision greater than that required for small signals. Owing to the nonuniform nature of the quantization in a floating-point A/D converter (FADC), it is possible to sacrifice a large peak signal-to-noise ratio to obtain savings in power dissipation and area while achieving a large dynamic range. A 15-b switched-capacitor pipelined FADC has been designed with a 10-b mantissa and an exponent that provides an additional 5 bits of dynamic range. The increased dynamic range is obtained with a three-stage pipelined variable gain amplifier, while the mantissa is determined by a uniform 10-b pipelined A/D converter. An experimental prototype of the converter has been integrated in a 0.5 μm CMOS technology. It achieves a dynamic range of 90 dB at a conversion rate of 20 MSamples/s with a total power dissipation of 380 mW  相似文献   

15.
The design of a 600-MS/s 5-bit analog-to-digital (A/D) converter for serial-link receivers has been investigated. The A/D converter uses a closed-loop pipeline architecture. The input capacitance is only 170 fF, making it suitable for interleaving. To maintain low power consumption and increase the sampling rate beyond the amplifier settling limit, the paper proposes a calibration technique that digitally adjusts the reference voltage of each pipeline stage. Differential input swing is 400 mV/sub p-p/ at 1.8-V supply. Measured performance includes 25.6 dB and 19 dB of SNDR for 0.3-GHz and 2.4-GHz input frequencies at 600 MS/s for the calibrated A/D converter. The suggested calibration method improves SNDR by 4.4 dB at 600 MS/s with /spl plusmn/0.35 LSB of DNL and /spl plusmn/0.15 LSB of INL. The 180 /spl times/ 1500 /spl mu/m/sup 2/ chip is fabricated in a 0.18-/spl mu/m standard CMOS technology and consumes 70 mW of power at 600 MS/s.  相似文献   

16.
A 10-bit 200-MS/s CMOS parallel pipeline A/D converter   总被引:1,自引:0,他引:1  
This paper describes a 10-bit 200-MS/s CMOS parallel pipeline analog-to-digital (A/D) converter that can sample input frequencies above 200 MHz. The converter utilizes a front-end sample-and-hold (S/H) circuit and four parallel interleaved pipeline component A/D converters followed by a digital offset compensation. By optimizing for power in the architectural level, incorporating extensively parallelism and double-sampling both in the S/H circuit and the component ADCs, a power dissipation of only 280 mW from a 3.0-V supply is achieved. Implemented in a 0.5-μm CMOS process, the circuit occupies an area of 7.4 mm2. The converter achieves a differential nonlinearity and integral nonlinearity of ±0.8 LSB and ±0.9 LSB, respectively, while the peak spurious-free-dynamic-range is 55 dB and the total harmonic distortion better than 46 dB at a sampling rate of 200 MS/s  相似文献   

17.
A low-power 16-bit CMOS D/A (digital/analog) converter for portable digital audio is described. The converter is based on current division. To guarantee monotonicity and a good small-signal reproduction, a dynamic segmentation technique is used. A geometric averaging technique is used to minimize the harmonic distortion of the converter at high signal levels. The dynamic range is 95 dB. The circuit operates in a time-multiplex mode at a sample frequency of 44 kHz in a power supply range of 2.5-5 V and has a power consumption of 15 mW. A 2-μm CMOS technology is used and the active chip area is 5 mm2   相似文献   

18.
A BiCMOS A/D converter using a “differential voltage subconverter,” which directly converts a voltage difference of complementary analog inputs to a digital code, is described. Fully differential architecture has advantages in immunity of common-mode error and in reduction of supply voltage. This differential-voltage subconverter realizes the fully differential A/D conversion without using interpolation technique. This subconverter is free from CR delay caused in the ladder resistors. Circuit techniques for high-accuracy conversion with single 5-V power supply, such as compensation technique for VBE modulation in emitter degeneration amplifier, are also described. A 10-b A/D converter is fabricated in a 0.8-μm BiCMOS process with fT of 9 GHz. It successfully operates at 50 MS/s with 500-mW power consumption and with 5-V single supply  相似文献   

19.
实现了一种适合手持式设备应用的8 bit模数(A/D)转换器,该A/D转换器采用了2级电容插值和斩波放大技术以降低正常工作模式功耗,流水放大和预平衡比较器技术有效地提高了采样频率.测试结果表明,该流水插值A/D转换器的微分非线性(DNL)和积分非线性(INL)分别为-1~1.63LSB和-1.66~2.05LSB,其总谐波失真(THD)、去除寄生动态范围(SFDR)和信噪加失真比(SNDR)分别为-43 dB、54 dB和36.7 dB,正常工作模式和等待模式功耗分别为76 mW和5 mW.该芯片采用中芯国际(SMIC)0.18 μm单层多晶六层金属混合CMOS工艺,芯片面积为1269 μm×885 μm.  相似文献   

20.
A 6-b 30-MHz flash A/D converter using 8.4-GHz cutoff frequency sidewall base contact structure (SICOS) technology is described. By using n-p-n transistors operated upwardly (in reverse-action condition) and p-n-p transistors with a 860-MHz cutoff frequency, a power consumption of 12 mW has been achieved, with a 3-V power supply. This converter can digitize video signals of up to 7 MHz at a conversion frequency of 30 MHz. An SNR of 37 dB was observed. Chip area of the fabricated converter is 1.5 mm/SUP 2/.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号