首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 560 毫秒
1.
真空中典型沿面绝缘结构的电场分析   总被引:1,自引:0,他引:1  
在高电压作用下,由复合绝缘介质构成的沿面绝缘结构的耐电强度远低于其绝缘材料自身的击穿场强,这一现象与其电场的分布特点密切相关。笔者针对真空中平行平板、平面和棒-板电极系统等多种典型沿面绝缘结构的电场分布进行了仿真计算,探讨了电极-介质结合处的间隙、圆台形绝缘子的圆锥角角度、平面电极的高度以及绝缘子介电常数等因素对电场分布的影响。仿真结果表明,接触间隙的存在导致局部电场的加强和电场方向的变化,间隙宽度越大、高度越小,间隙处电场畸变越大;圆锥角越大,绝缘子的介电常数越大,场强畸变也越大。该分析结果有利于真空中沿面绝缘结构的设计。  相似文献   

2.
This paper considers the statistical theory of electrical breakdowns in high voltage (HV) devices. The extended probability distribution of breakdown is deduced for nonuniform gaps. The breakdown of high voltage apparatus is sensitive to local irregularity of the electric field which may result from the presence of defects such as surface roughness. The surface roughness leads to existence of localized microscopic projection with local electric field strength at the projection top larger than the average field at the electrode surface. The link between parameters determining the probability of electrical breakdown and the parameters determining microscopic geometry of electrode surface is obtained. In this paper a simplified breakdown model is used as a basis for statistical treatment. According to the model the breakdown proceeds if the electric field strength at the projection top exceeds the critical value. The method of dielectric strength calculation for HV devices using a simplified model of breakdown is presented. The paper gives an example of calculation of the breakdown voltage for vacuum switch TVS-43. Results of calculations are compared with available experimental data and Weibull distribution  相似文献   

3.
Coating the inside surface of gas insulated switchgear (GIS) enclosures with a dielectric film reduces the deleterious effect of electrode surface roughness, impedes the development of metallic particle initiated microdischarges, increases the field required to lift particles, and reduces the charge acquired by particles, all of which help alleviate the adverse effect of contaminating metallic particles on insulation withstand. The performance of particle-contaminated compressed gas systems with dielectric coated electrodes is analyzed. Two mechanisms for the transfer of charge from electrodes to contaminating particles are considered, namely, conduction through the coating layer and microdischarges in the surrounding gas. The paper presents an electrostatic study of the particle lifting fields with dielectric covered electrodes. The overall breakdown strength of the system is evaluated and the results are discussed in the light of experimental findings  相似文献   

4.
利用优异值预测SF_6装置的绝缘强度   总被引:1,自引:1,他引:1  
本文的实验和计算结果表明,应用SF_6气体的优异值M,不仅能方便地预测电极表面粗糙情况下SF_6气体或混合气体的击穿门槛E_0/P,而且可以预测具有光洁表面电极的非均匀电场间隙的绝缘强度。  相似文献   

5.
Relevant phenomena during the period of the recovery of the dielectric strength of vacuum interrupter (VI) are reviewed. Metal vapor, residual charge and the effects of molten contact surfaces reduce the breakdown strength after the interruption of high currents. Metal droplets seem to play only a secondary role during the recovery phase. Instability of liquid protrusions is suspected to initiate breakdown if the electric field strength exceeds 10 kV/mm at the molten contact surfaces (undisturbed field). Key parameters are surface temperature and vapor density. Breakdown during recovery of the dielectric strength depends not only on the value of the voltage applied but also on the duration of the high voltage stress. A spontaneous triggering event in the presence of metal vapor appears to initiate breakdown at conditions below the Paschen breakdown limit. This type of breakdown events limits the interruption performance of VI's.  相似文献   

6.
Electrode protrusions and free particles have been demonstrated to reduce dramatically the breakdown voltage of insulating fluids. This paper examines two factors which affect the dielectric strength of gaseous insulators: (1) shape and size of electrode protrusions, and (2) particle chain formation. A computer program, based on the boundary element method, was employed for the computation of the electric field modified by an electrode protrusion and/or a particle chain. The results regarding field enhancement were used as input data of another program that evaluated the dielectric strength of the air-gap. Two types of protrusions were studied: hemispheres and hemispherically ended rods. One to ten conductive spheres were considered to be attracted to such protrusions and chain at the top of them. The computations showed that the large protrusions are more harmful than the small ones and that the dielectric strength of the air-gap decreases with the number of particles in a chain  相似文献   

7.
This paper shows how to determine the electrode contour with the best insulation performance on the basis of an area effect and a volume effect in the breakdown field strength. Previous electric field optimization techniques have provided us only with an optimum electric field distribution, For the design of power apparatus insulation, we have to consider the dielectric breakdown characteristics rather than the electric field distribution. As a first step, we developed a new optimization technique which enables us to obtain an optimum electrode contour with the highest breakdown strength while taking into account the area and volume effects of breakdown strength of insulating media. From the results, we have confirmed that the proposed optimization method improved the breakdown voltage more than did the electric field optimization. This leads to an effective insulation design of electric power apparatus  相似文献   

8.
Outlines for increased insulation performance of an air gap through the use of dielectric coatings are given. Theoretically, it is shown that the homogeneous electric field in a plane-parallel electrode system can be reduced if the electrodes are covered with a thick dielectric coating. Free charges will be affected by the electric field between the electrodes and are deposited at the dielectric surfaces. As a consequence, a counteracting electric field component results, which accordingly causes a reduction of the total electric field in the air gap and an enhancement of the field in the dielectric layers, i.e. the electric field is forced into the dielectric coatings by the charges. This effect has important implications in HV engineering. Introductory experiments supporting the idea have been carried out with promising results. It was confirmed that the withstand voltage of a plane-parallel electrode geometry with an open air gap, for dc as well as unipolar impulse voltage, could be increased considerably if the electrodes were covered with thick polymeric layers. Charge formation at the electrode surfaces as well as in the air gap is believed to be responsible for this effect. In today's insulation systems, this is known to work only for time-independent electric fields, i.e. generally dc voltages. Further experimental work is required and will be performed in order to scrutinize thoroughly and clarify the phenomenon, its capabilities and limitations  相似文献   

9.
Gas‐insulated switchgear (GIS) has widely been used for AC power distribution because of its high reliability and compactness. Recently, DC GIS has been developed with various investigations for dielectric breakdown characteristics of DC gas insulation. GIS insulation is composed of SF6 gas and solid spacers, and it has been recognized that the dielectric performance of DC GIS is mainly influenced by solid spacers. Under DC stress, the electric field is directed one way, the effect of electrification for charges to be accumulated in the spacer must be taken into account and also the effect exists in AC GIS because the switching operations may leave the remnant DC charge on the AC GIS spacer. This paper first describes the effective resistivity (the bulk or the surface) of the solid spacer under the DC stress from the experimental investigation, and the critical factor on the solid spacer that causes reduced dielectric performance of the GIS insulation is studied. Second, the present paper deals with the electrification on the GIS with various levels of surface roughness of the epoxy insulator and metallic electrode. Finally, the DC insulation characteristics of GIS insulator are investigated based on the experimental results. © 2009 Wiley Periodicals, Inc. Electr Eng Jpn, 168(4): 6–13, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/eej.20788  相似文献   

10.
Breakdown (BD) characteristics in vacuum are strongly dependent on the electrode surface conditions, such as surface roughness. However, there is little known concerning the details of the relationship between the surface roughness and BD conditioning effect. In practical application, it is important to clarify how the surface roughness affects the breakdown conditioning characteristics, especially for the non-uniform field configuration. This paper discusses the effect of surface roughness on breakdown conditioning characteristics under non-uniform electric field in vacuum under applications of negative standard lightning impulse voltage. For this purpose, we examined the BD conditioning of a rod-to-plane electrode made of SUS304 and Cu-Cr. The surface roughness of Ra is controlled from 0.3 to 2.5 mum. Experimental results revealed that the enhancement of surface roughness of electrodes increases the number of BD to complete the conditioning effect. We explained the results from the observed results of the electrode surface. Consequently, we could clarify the effect of surface roughness on the conditioning effect under non-uniform electric field in vacuum quantitatively.  相似文献   

11.
Sample cables having a few types of defects (such as voids, contaminants, and protrusions) with more volume than usual, were prepared intentionally to clarify how these defects affect separately insulation characteristics under the presence/nonpresence of moisture. In the case of void inclusion, insulation characteristics are even more susceptible to ac voltage than impulse voltage, and the distribution of lifetimes is classified into a wornout failure type due to discharge deterioration. While protrusions and some other contaminants can greatly deteriorate original dielectric strength, these defects have a relatively slight effect on long-term endurance in the atmosphere. Therefore, the distribution of lifetimes is classified into an early-failure type. With reference to the influence of moisture, in a strong electric field (exceeding 15 kV/mm) and in a short-term region, there is an increase in harmfulness around defects with water absorbed, thereby inducing electrical trees and resulting in a breakdown. In the light electric field (no more than 15 kV/mm) and in a long-term region, harmfulness of defects will not deepen to a considerable extent, and the growth of water trees very possibly is influential.  相似文献   

12.
This article discusses the dielectric breakdown characteristics of an insulator with a sharp edge that forms inhomogeneous gaps in SF6 under a lightning impulse voltage. The high voltage electrode is a plane electrode, and the grounded electrode is a plane electrode with a column insulator, which has an inside electrode. The column insulator has a height of 50 mm and a diameter of 50 mm. The inside electrode in the column insulator has a height of 20 mm or 30 mm or 40 mm. The inside electrode changes the electric field on the surface of the column insulator. The SF6 gas pressure is 0.225 MPa. Dielectric breakdown does not occur at the edge of the column insulator, but rather at the top plane of the column insulator. The dielectric breakdown voltage is defined by the electric field at the center of the column insulator  相似文献   

13.
Accurate assessment of cable insulation conditions can be achieved by implementing advanced diagnostic and simulation techniques that assist the measurement and monitoring of the properties related to aging and failure of the insulation system. It is well recognized that the electric field distribution is the dominant factor in the initiation of degradation process in the insulation system. In such a system, and due to the presence of pollutants such as water or moisture, local field enhancement occurs resulting in field stress values enough to cause local breakdown of the insulation. The finite element simulation technique is used to evaluate the electric field inside the power cable. A model that illustrates the water-dielectric interface within the cable insulation system is proposed. The difficulties associated with the building of such a model, which contains elliptically shaped water particles and unusually configured insulation areas, are illustrated. Finally, the link between the local field concentration in the vicinity of water particles and the possibility of insulation failure, which can be developed to a complete breakdown, is discussed.  相似文献   

14.
由于系统性原因,换流变压器阀侧在实际运行过程中长期承受直流电场分量作用,油纸绝缘在直流电压下的耐受能力是换流变压器设计过程中的重要关注点。文中考虑谐波含量、油温、含气量、油纸介电常数、纸板浸渍程度等各种潜在因素,开展了油纸绝缘直流击穿特征的基础试验研究,并用初始电子发射、空间电荷、杂质小桥等电介质理论对结果予以合理阐释,相关结论可对换流变压器阀侧绝缘结构优化和场强设计提供一定的参考。  相似文献   

15.
本文考察了用细金属丝密绕于光滑电极表面上,来模拟连续半园柱微观突出粗糙表面的实际可行性,定量计算及实验了这种表面在SF_6中的表面粗糙度效应,计算曲线与实验结果非常接近。这表明,只要计算模型与实验电极一致,电极表面的连续微观突出对SF_6气体放电的影响,可根据流注判据定量预测。  相似文献   

16.
Experimental results on the propagation of positive streamers along contoured, axially symmetric, polytetrafluoroethylene (PTFE) insulation surfaces are presented. A plane parallel electrode configuration provides a substantially uniform electric field for streamer propagation and a point electrode at the ground plane initiates the avalanche process. Basic streamer properties of velocity and propagation probability with field strength are measured and compared with the corresponding characteristics of air and cylindrical insulators. Several insulator profiles are investigated and the occurrence of multiple streamer paths is demonstrated, which are generally distinguishable as surface and air components with different propagation velocities. Comparative data of the breakdown fields for the various insulators is included  相似文献   

17.
均匀电场重频脉冲作用下处理室放电问题是高压脉冲电场(pulsed electric field,PEF)技术遇到的难题.目前现有水中空气泡的击穿研究无法说明这种平均电场强度较低(<70kV/cm)的情况下的击穿现象.为了解决这一问题,设计了金属平板电极与水溶液电极间的气体击穿实验,利用等效实验研究了有水溶液电极的大气压...  相似文献   

18.
Particle-initiated breakdown characteristics in SF6 gas are investigated. Breakdown voltages are greatly influenced by particle diameter especially for AC voltages, and for very fine metallic wire particles are much higher than those for moderately thick ones. The breakdown stress of a gas gap is obtained as a function of particle length and can be estimated fairly well by assuming a corona stabilizing zone. For a spacer, the electric stress which is parallel to its surface dominates surface breakdowns and the relation between the stress and particle length is experimentally determined. In order to increase breakdown voltages, the effects of both the dielectric coating on a high-voltage electrode and spacer shape are examined. Finally, the effectiveness of the dielectric coating on a grounded electrode is demonstrated to prevent particle levitation.  相似文献   

19.
SF6 gas has been widely used in electrical power equipment such as circuit breakers and transformers due to its superior insulation and interruption characteristics. However since 1997, SF6 gas has been designated a greenhouse gas subject to emission restrictions at COP3 (The 3rd session of the Conference Of the Parties to the United Nations Framework Convention on Climate Change) so a new insulating gas is needed as a substitute for SF6 gas. This research considers the use of high-pressure CO2 gas as an insulator while stressing the environment aspects. Fundamental insulation data for the insulating gas acquired supposing gas insulated switchgears (GIS) consists of; (1) insulation breakdown characteristics under clean conditions and, (2) insulation breakdown characteristics with metallic particle contamination. The parameters in this case were assumed from an actual apparatus viewpoint, to be a high gas pressure up to 2.0 MPa, an electrode size capable of determining the surface area effect, the electrode surface roughness, and metallic particle length, etc. at the base electrode of the 72 kV GIS. As a result, experiments using these parameters revealed insulation characteristics for high-pressure CO2 gas and that negative lightning impulse decided the insulation design, as well as the present SF6 GIS. The need for taking measures to suppress PD under AC voltage and also the need for restricting metallic foreign particles around the central conductor and insulating spacer were recognized  相似文献   

20.
The relationship between the impulse breakdown voltage of vacuum gaps and electrode surface roughness was investigated for the purpose of controlling the surface roughness on HV conductors. The roughness of mechanically polished Cu and Cu-Cr electrodes was measured with a roughness meter, and the relationship between the breakdown voltage and surface roughness was obtained for plate-to-plate gaps. The discharge-conditioning effect increased with reduction in the surface roughness. The breakdown voltage depended not only on the roughness of the cathode but also on the anode surfaces. Reducing the surface roughness was found not to be an effective way to increase the breakdown voltage for non-uniform field gaps after discharge conditioning.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号