首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
利用溶液燃烧法制备氧化镧(La2O3)掺杂Mo粉前驱体,对前驱体粉末还原、烧结,研究La2O3掺杂量(质量分数)对Mo–La2O3合金性能的影响。结果表明,前驱体粉末在700 ℃下氢气气氛中还原,得到平均晶粒尺寸在100~220 nm的La2O3掺杂Mo粉。Mo–La2O3粉末经过1600 ℃放电等离子烧结后相对密度达95%以上,但随着La2O3掺杂量的提升,其相对密度逐渐降低。随着La2O3掺杂量的增加(质量分数在0~1.0%范围内),显微硬度先上升后下降。在La2O3掺杂量为0.7%时,Mo晶粒尺寸为500 nm左右,材料显微硬度最高,达到了HV0.2 564。  相似文献   

2.
以W、Ni、Fe元素粉末和纳米Y2O3粉末为原料,制备97W-2Ni-1Fe和96.5W-2Ni-Fe-0.5Y2O3钨合金,通过扫描电镜(SEM)、能谱仪(EDS)等手段进行表征,并结合黏结相的面积分数和W晶粒接触度的分析,研究烧结温度与添加纳米Y2O3对高密度钨合金微观组织与力学性能的影响。结果表明:随烧结温度升高,钨合金的晶粒尺寸和力学性能明显增加。在1510℃(液相)烧结温度下,添加纳米Y2O3使钨晶粒尺寸从21.6μm减小至7.8μm,黏结相的面积分数从4.45%增加至5.35%,接触度为0.67,合金力学性能显著提升,抗拉强度达到611 MPa,硬度(HRC)为40.1。96.5W-2Ni-Fe-0.5Y2O3合金的拉伸断裂形态为黏结相的撕裂和少量W晶粒解理断裂,添加纳米Y2O3使得黏结相撕裂的比例增加。  相似文献   

3.
以分析纯Ca(OH)2和m-ZrO2为原料, 按物质的量1:1进行配料, 添加不同质量分数Fe2O3粉末作为添加剂, 经充分混合后压制成?20 mm×20 mm圆柱试样, 再经1600℃保温3 h煅烧制备得到锆酸钙陶瓷试样(CaZrO3)。利用显气孔体密测定仪、X射线衍射仪及扫描电子显微镜分析Fe2O3粉末添加剂对CaZrO3陶瓷材料烧结性能、物相组成及微观结构的影响。结果表明:当没有添加Fe2O3粉末时, 试样烧结前后线变化率为12.72%, 体积密度为3.92g·cm-3, 显气孔率为14.9%, CaZrO3晶粒尺寸为4.22μm; 当加入质量分数0.75%Fe2O3粉末时, 试样烧结前后线变化率为17.20%, 体积密度为4.68 g·cm-3, 显气孔率为6.8%, CaZrO3晶粒尺寸为5.21μm。  相似文献   

4.
利用机械合金化工艺制备了颗粒尺寸为0.5μm、W晶粒尺寸为10am的纳米晶W-Cu粉末,研究了其烧结致密化行为、烧结合金显微组织及其性能,并考察了其晶粒长大特性。结果表明:烧结温度和时间的增加有利于致密化,1300℃烧结30min,合金取得了99%的相对密度;硬度随烧结温度、时间的增加而增加,在1375℃烧结30min,硬度为HB321。W晶粒随着烧结温度的升高而增大,1200℃烧结30min获得了相对密度为98%以上、硬度为HB264、晶粒尺寸约为350am的细晶W-Cu合金。  相似文献   

5.
采用纳米喷雾掺杂技术和粉末冶金方法制备了含不同质量分数氧化钇(Y2O3)和氧化铈(CeO2)的Mo–Y–Ce合金,分析了Y2O3和CeO2双相弥散强化对Mo合金晶粒度和室温力学性能的影响。结果表明,Y2O3可抑制个别晶粒异常长大,并具有沉淀强化效果。Mo–Y合金丝的力学性能与Y2O3掺杂量密切相关,当Y2O3质量分数为0.60%时,?1.8-mm Mo–Y合金丝抗拉强度为1050 MPa,屈服强度为923 MPa;CeO2因与Mo基体具有半共格关系而具有较好的韧化效果,当CeO2质量分数为0.06%~0.08%时,Mo–Y–Ce合金烧结态晶粒尺寸达10 μm以下,?1.8-mm Mo–Y–Ce合金丝抗拉强度为1130 MPa,屈服强度为1018 MPa,延伸率达到28.5%。?0.18-mm Mo–Y–Ce合金丝抗拉强度达2510 MPa。实验优化出Mo–Y–Ce双相弥散强化Mo合金的最优成分为Mo–0.6Y2O3–(0.06~0.08)CeO2。  相似文献   

6.
通过固-液掺杂法在Mo-Re合金中加入稀土La2O3纳米颗粒制备得到Mo-Re-La合金, 将Mo-Re-La合金与Mo-Re合金、纯Mo的微观组织及力学性能进行对比研究, 得到如下结论: 在纯Mo中添加低含量Re元素(质量分数3.5%) 对Mo-Re合金有明显的细晶强化效果; 将La2O3纳米颗粒加入Mo-Re合金进一步细化和强化了Mo-Re-La合金。  相似文献   

7.
针对ZrB2陶瓷粉末在球磨时易掺入ZrO2,影响ZrB2陶瓷烧结致密化的问题,添加B4C作为烧结助剂,采用无压烧结法制备ZrB2陶瓷材料,研究B4C含量(w(B4C),下同)对材料微观形貌、硬度与抗弯强度的影响。结果表明,B4C通过与晶粒表面的ZrO2发生反应,抑制ZrB2晶粒粗化,减小晶粒尺寸,从而提高烧结致密度。随B4C含量增加,ZrB2陶瓷的晶粒尺寸和相对密度逐渐增大,抗弯强度和硬度先升高后降低。当w(B4C)为7%时,ZrB2晶粒细小,材料的抗弯强度和硬度(HV)达到最大,分别为242 MPa和12.65 GPa。w(B4C)增加至9%时,出现晶粒异常长大,材料力学性能下降。  相似文献   

8.
由于Al2O3-MgO-CaO系耐火材料在烧成过程中存在许多对烧结致密化不利的因素, 进而影响其相关性能的使用.为此, 在1 500~1 600 ℃条件下制备了Al2O3-MgO-CaO复合材料, 并研究加入CeO2添加剂对该系耐火材料烧结致密化的影响.实验结果表明:将CeO2添加到Al2O3-MgO-CaO系耐火材料的较优烧成温度为1 600 ℃, 当CeO2的添加量(质量分数, 下同)分别为4 %和6 %时, 其显气孔率分别降低至3.9 %和3.8 %, 体积密度从未添加时的2.88 g/cm3分别升高至3.62 g/cm3和3.68 g/cm3; 同时, 通过扫描电镜观察发现添加CeO2后该系耐火材料显微结构致密化程度较高, 从而实现其良好的致密化.   相似文献   

9.
以α-Al2O3和氧化钇稳定氧化锆粉体为原料,无压烧结制备致密Al2O3-ZrO2复相陶瓷,在临界电场下进行热处理后,对Al2O3-ZrO2复相陶瓷的微观结构和力学性能进行研究。结果表明:在900 V/cm的电场下,烧结致密Al2O3-ZrO2复相陶瓷的闪烧起始炉温为308℃。在炉温为1 200℃、电场为700 V/cm的条件下,闪烧致密Al2O3-ZrO2复相陶瓷原位合成Al2O3-ZrO2共晶结构。闪烧陶瓷主要分为复相区、过渡区和共晶区3个区域。复相区的微观结构与烧结陶瓷相似,形状不规则的Al2O3和ZrO2相均匀分布;过渡区晶粒异常长大,粗大的Al...  相似文献   

10.
研究了在3.5%NaCl溶液中,Al2O3掺杂对钼合金电化学腐蚀性能的影响,并分析了合金的腐蚀机理。结果表明:Mo-Al2O3合金的耐腐蚀性能显著优于纯钼,随着Al2O3含量的增加,Mo-Al2O3合金的耐腐蚀性能先提升后下降。在腐蚀过程中,Cl-优先吸附于钼合金氧化膜的缺陷位置形成点蚀,随着电位的增大,点蚀沿晶界扩大成为腐蚀沟槽。Al2O3可细化钼晶粒,从而促进钼合金形成致密的氧化物薄膜,不易发生点蚀,从而提升钼合金的耐腐蚀性能;但当钼合金中Al2O3的体积分数达到1.6%时,Al2O3颗粒由于团聚长大,破坏了钼合金氧化膜的完整性,使其对合金基体的保护作用减弱,导致钼合金耐腐蚀性能下降。  相似文献   

11.
以烧结刚玉、α-Al2O3微粉、高纯镁砂、金属铝粉为原料, 酚醛树脂为结合剂, 制备Mg O–Al2O3和Al–MgO–Al2O3系复合材料, 样品成型后经过200℃烘干, 于1500℃氧化气氛烧成。利用X射线衍射仪, 扫描电子显微镜和能谱仪研究了金属铝粉对MgO–Al2O3复合材料抗氧化性的影响。结果表明: 未添加金属铝粉的样品烧后主晶相为α-Al2O3及镁铝尖晶石, 微观结构较为疏松; 引入金属铝粉后, 样品烧后主晶相为α-Al2O3及镁铝尖晶石, 新生相包括Al4O4C、Al4C3、(Al2OC)x(AlN)1-x等, 微观结构较为致密, 样品性能得到改善。添加金属铝粉样品的内外组成呈梯度变化, Al4O4C相主要出现在样品内部, 并有金属铝残留; 金属铝粉引入使样品氧分压从表面到内部依次降低, 金属铝粉氧化后与Mg O原位合成尖晶石, 使结构致密化, 阻隔了氧气的进一步渗入, 样品内部形成的Al2O与C反应得到晶须状Al4O4C。  相似文献   

12.
为进一步优化电解制备Al-Cu-Y合金的热、动力学条件,对AlF3-(Li, Na)F-(Al2O3-Y2O3)熔盐体系的密度、黏度及电导率变化规律进行研究。分别采用阿基米德法、连续变化电导池常数法和旋转法测定AlF3-(Li, Na)F-(Al2O3-Y2O3)熔盐体系在温度为900~1 000 ℃范围内,n((Li, Na)F): n(AlF3)=2.5时的密度(ρ)、电导率(σ)、黏度(η)随温度和组分的变化规律,结果表明:在温度900~1 000 ℃范围内,AlF3-(Li, Na)F-(Al2O3-Y2O3)体系中Al2O3和Y2O3的含量一定,密度-温度、黏度-温度和电导率-温度之间均呈线性关系。在温度为950 ℃条件下,熔盐体系的密度随Al2O3含量的增加而线性减小,随Y2O3含量的增加而线性增加; 电导率随Y2O3或Al2O3含量的增加而线性减小; 体系的黏度则随Y2O3或Al2O3含量的增加而线性增加。   相似文献   

13.
以纳米Al2O3颗粒、超细WC粉末、工业纯Cu粉末为原料, 通过热挤压致密获得了超细WC/纳米Al2O3弥散强化铜基(WC-Al2O3/Cu)复合材料, 研究了挤压态WC-Al2O3/Cu复合材料的微观组织及力学性能。结果表明: 成分为5% WC-2% Al2O3/Cu和10% WC-2% Al2O3/Cu (质量分数)的两种原料粉末, 经机械球磨、冷压、真空烧结和热挤压后, 其相对密度均达到了99%以上, 超细WC和纳米Al2O3强化相颗粒呈均匀弥散分布, 具有很好的导电性及力学性能; 其中, 5% WC-2% Al2O3/Cu复合材料的综合性能更佳, 其抗拉强度达到235.06 MPa, 延伸率为15.47%, 导电率可达85.28% IACS, 软化温度不低于900℃。  相似文献   

14.
以六水合硝酸镧和六水合硝酸铈为原料,一水合柠檬酸为络合剂,通过低温固相反应法制备铈酸镧前驱体,经不同温度煅烧制备铈酸镧粉体。利用红外光谱和综合热分析研究前驱体的结构和热分解过程,并通过X射线衍射分析、扫描电子显微镜观察、透射电子显微镜分析和体积密度测试等手段对不同煅烧温度合成的粉体物相、形貌及烧结性能进行表征。结果表明:当煅烧温度达到600 ℃时,前驱体开始生成铈酸镧晶体,且随着煅烧温度的提高,晶体发育不断完善,晶粒逐渐长大。经800 ℃煅烧可获得单相的铈酸镧粉体,再经1600 ℃烧结,试样的相对密度达到95.5%。  相似文献   

15.
采用喷射沉积和内氧化法制备出Al2O3La2O3Y2O3/Cu复合材料,研究该材料在直流20 V/20 A的工作条件下触点的电弧侵蚀特性,并与Al2O3/Cu材料进行了对比分析.利用电子天平、扫描电镜等方法分析电弧侵蚀后触点的质量变化和表面微观结构.结果表明,通过添加Y2O3、La2O3稀土氧化物颗粒,可有效降低触头材料的材料转移量.Al2O3La2O3Y2O3/Cu材料的抗熔焊性和抗烧损性优于Al2O3/Cu材料的性能.在直流阻性负载条件下Al2O3La2O3Y2O3/Cu阳极触头表面形成凹坑,阴极触头表面形成凸起,触点表面显示出浆糊状凝固物和喷发坑等电弧侵蚀形貌特征.   相似文献   

16.
以氮气为保护气氛,在820~980℃下用La2O3刻蚀人造金刚石单晶表面,研究稀土氧化物La2O3刻蚀对人造金刚石单晶性能的影响。利用扫描电子显微镜观测刻蚀后金刚石单晶不同晶面的表面形貌,通过人造金刚石单晶表面粗糙度、单颗粒抗压强度、抗冲击韧性和铜基结合剂金刚石节块抗弯强度来表征刻蚀前后金刚石单晶性能的变化。结果表明:La2O3对金刚石{100}面和{111}面的刻蚀是各向异性的;当刻蚀温度从820℃升高到980℃时,{100}面表面粗糙度从0.40μm增加至2.28μm,{111}面表面粗糙度从0.70μm增加到3.32μm,金刚石单颗粒的抗压强度由未刻蚀金刚石的576 N降低到最小530 N,冲击韧性由92.94%下降到89.21%。当金刚石体积分数为5%时,刻蚀后金刚石节块的抗弯强度增幅达到17.9%。  相似文献   

17.
以微米级Cu粉为基体相,纳米Al2O3颗粒为绝缘相,采用机械球磨和放电等离子烧结工艺相结合的方法制备Al2O3/Cu复合材料,研究Al2O3含量对复合材料微观结构、电阻率和热导率的影响。结果表明,Al2O3/Cu复合材料为核?壳结构,随Al2O3含量增加,Al2O3包覆层对Cu基体的包覆效果逐渐提升;当w(Al2O3)为5%时,Al2O3/Cu复合材料的热导率较高,为85.92 W/(m·K),但电阻率偏低,仅为12.6 mΩ·cm。当w(Al2O3)增加至15%时,虽然Al2O3/Cu复合材料的密度降至6.69 g/cm3,孔隙率较高,但电阻率显著提高至2.09×108 mΩ·cm,约为Cu电阻率的1011倍,且热导率为7.6 W/(m·K),明显高于传统金属基板的热导率。  相似文献   

18.
固相烧结法合成钙钛矿型Li3/8Sr7/16Ta3/4Hf1/4O3(LSTH) 固体电解质材料,制备过程中分别加入过量的碳酸锂,质量分数分别为(0~30 %).通过XRD、SEM、ICP-OES以及EIS测试,表征不同锂过量LSTH固体电解质材料成相、显微形貌以及室温电导率的影响.实验结果表明,配料时,过量一定质量百分数的碳酸锂,能够有效减少烧结过程中因锂挥发而生成的SrTa2O6杂相,提高样品密度和室温电导率.样品最佳锂过量质量百分数为20 %,20 %锂过量样品1 300 ℃烧结10 h为钙钛矿纯相,密度6.5 g/cm3,室温电导率达到3.12×10-4 S/cm.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号