首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last two decades, multiobjective optimization has become main stream and various multiobjective evolutionary algorithms (MOEAs) have been suggested in the field of evolutionary computing (EC) for solving hard combinatorial and continuous multiobjective optimization problems. Most MOEAs employ single evolutionary operators such as crossover, mutation and selection for population evolution. In this paper, we suggest a multiobjective evolutionary algorithm based on multimethods (MMTD) with dynamic resource allocation for coping with continuous multi-objective optimization problems (MOPs). The suggested algorithm employs two well known population based stochastic algorithms namely MOEA/D and NSGA-II as constituent algorithms for population evolution with a dynamic resource allocation scheme. We have examined the performance of the proposed MMTD on two different MOPs test suites: the widely used ZDT problems and the recently formulated test instances for the special session on MOEAs competition of the 2009 IEEE congress on evolutionary computation (CEC’09). Experimental results obtained by the suggested MMTD are more promising than those of some state-of-the-art MOEAs in terms of the inverted generational distance (IGD)-metric on most test problems.  相似文献   

2.
目前,大多数多目标进化算法采用为单目标优化所设计的重组算子.通过证明或实验分析了几个典型的单目标优化重组算子并不适合某些多目标优化问题.提出了基于分解技术和混合高斯模型的多目标优化算法(multiobjective evolutionary algorithm based on decomposition and mixture Gaussian models,简称MOEA/D-MG).该算法首先采用一个改进的混合高斯模型对群体建模并采样产生新个体,然后利用一个贪婪策略来更新群体.针对具有复杂Pareto前沿的多目标优化问题的测试结果表明,对给定的大多数测试题,该算法具有良好的效果.  相似文献   

3.
Multiobjective evolutionary algorithms: analyzing the state-of-the-art   总被引:34,自引:0,他引:34  
Solving optimization problems with multiple (often conflicting) objectives is, generally, a very difficult goal. Evolutionary algorithms (EAs) were initially extended and applied during the mid-eighties in an attempt to stochastically solve problems of this generic class. During the past decade, a variety, of multiobjective EA (MOEA) techniques have been proposed and applied to many scientific and engineering applications. Our discussion's intent is to rigorously define multiobjective optimization problems and certain related concepts, present an MOEA classification scheme, and evaluate the variety of contemporary MOEAs. Current MOEA theoretical developments are evaluated; specific topics addressed include fitness functions, Pareto ranking, niching, fitness sharing, mating restriction, and secondary populations. Since the development and application of MOEAs is a dynamic and rapidly growing activity, we focus on key analytical insights based upon critical MOEA evaluation of current research and applications. Recommended MOEA designs are presented, along with conclusions and recommendations for future work.  相似文献   

4.
在过去几十年里,许多多目标进化算法被广泛应用于解决多目标优化问题,其中一种比较流行的多目标进化算法是基于分解的多目标进化算法(MOEA/D)。花朵授粉算法是一种启发式优化算法,但迄今为止,花朵授粉算法在基于分解的多目标进化算法领域的研究还非常少。本文在基于分解的多目标进化算法的框架下,将花朵授粉算法拓展至多目标优化领域,提出一种基于分解的多目标花朵授粉算法(MOFPA/D)。此外,为了保证非支配解的多样性,本文提出一种基于网格的目标空间分割法,该方法从找到的Pareto最优解集中筛选出一定数量且分布均匀的Pareto最优解。实验结果表明,基于分解的多目标花朵授粉算法在收敛性与多样性方面均优于基于分解的多目标进化算法。  相似文献   

5.
多目标进化算法中选择策略的研究   总被引:3,自引:1,他引:2  
在多目标进化算法(multiobjective evolutiorlsry algorithms,MOEAs)的文献中,对算法的选择策略进行系统研究的还很少,而MOEAs的选择策略不仅引导算法的搜索过程、决定搜索的方向而且对算法的收敛性有重要的影响,它是算法能否成功求解多目标优化问题的关键因素之一.在统一的框架下,首先讨论了多目标优化问题中适应度函数的构造问题,然后根据MOEAs的选择机制和原理将它们的选择策略重新分成了6种类型.一般文献中很少对多目标进化算法的操作算子采用符号化描述,这样不利于对算子的深层次理解,符号化描述了各类选择策略的操作机制和原理,并分析了各类策略的优劣性.最后,从理论上证明了具备一定特征的多目标进化算法的收敛性,证明的过程表明了将算法运行终止时得到的P known作为多目标优化问题的Pareto最优解集或近似最优解集的合理性.  相似文献   

6.
Over the past few years, the research on evolutionary algorithms has demonstrated their niche in solving multiobjective optimization problems, where the goal is to find a number of Pareto-optimal solutions in a single simulation run. Many studies have depicted different ways evolutionary algorithms can progress towards the Pareto-optimal set with a widely spread distribution of solutions. However, none of the multiobjective evolutionary algorithms (MOEAs) has a proof of convergence to the true Pareto-optimal solutions with a wide diversity among the solutions. In this paper, we discuss why a number of earlier MOEAs do not have such properties. Based on the concept of epsilon-dominance, new archiving strategies are proposed that overcome this fundamental problem and provably lead to MOEAs that have both the desired convergence and distribution properties. A number of modifications to the baseline algorithm are also suggested. The concept of epsilon-dominance introduced in this paper is practical and should make the proposed algorithms useful to researchers and practitioners alike.  相似文献   

7.
Preference information (such as the reference point) of the decision maker (DM) is often used in multiobjective optimization; however, the location of the specified reference point has a detrimental effect on the performance of multiobjective evolutionary algorithms (MOEAs). Inspired by multiobjective evolutionary algorithm-based decomposition (MOEA/D), this paper proposes an MOEA to decompose the preference information of the reference point specified by the DM into a number of scalar optimization subproblems and deals with them simultaneously (called MOEA/D-PRE). This paper presents an approach of iterative weight to map the desired region of the DM, which makes the algorithm easily obtain the desired region. Experimental results have demonstrated that the proposed algorithm outperforms two popular preference-based approaches, g-dominance and r-dominance, on continuous multiobjective optimization problems (MOPs), especially on many-objective optimization problems. Moreover, this study develops distinct models to satisfy different needs of the DM, thus providing a new way to deal with preference-based multiobjective optimization. Additionally, in terms of the shortcoming of MOEA/D-PRE, an improved MOEA/D-PRE that dynamically adjusts the size of the preferred region is proposed and has better performance on some problems.  相似文献   

8.
The growing popularity of multiobjective evolutionary algorithms (MOEAs) for solving many-objective problems warrants the careful investigation of their search controls and failure modes. This study contributes a new diagnostic assessment framework for rigorously evaluating the effectiveness, reliability, efficiency, and controllability of MOEAs as well as identifying their search controls and failure modes. The framework is demonstrated using the recently introduced Borg MOEA, [Formula: see text]-NSGA-II, [Formula: see text]-MOEA, IBEA, OMOPSO, GDE3, MOEA/D, SPEA2, and NSGA-II on 33 instances of 18 test problems from the DTLZ, WFG, and CEC 2009 test suites. The diagnostic framework exploits Sobol's variance decomposition to provide guidance on the algorithms' non-separable, multi-parameter controls when performing a many-objective search. This study represents one of the most comprehensive empirical assessments of MOEAs ever completed.  相似文献   

9.
This paper proposes a new direction for design optimization of a water distribution network (WDN). The new approach introduces an optimization process to the conceptual design stage of a WDN. The use of multiobjective evolutionary algorithms (MOEAs) for simultaneous topology and sizing design of piping networks is presented. The design problem includes both topological and sizing design variables while the objective functions are network cost and total head loss in pipes. The numerical technique, called a network repairing technique (NRT), is proposed to overcome difficulties in operating MOEAs for network topological design. The problem is then solved by using a number of established and newly developed MOEAs. Also, two new MOEAs namely multiobjective real code population-based incremental learning (RPBIL) and a hybrid algorithm of RPBIL with differential evolution (termed RPBIL–DE) are proposed to tackle the design problems. The optimum results obtained are illustrated and compared. It is shown that the proposed network repairing technique is an efficient and effective tool for topological design of WDNs. Based on the hypervolume indicator, the proposed RPBIL–DE is among the best MOEA performers.  相似文献   

10.
In this paper, we propose a parallel multiobjective evolutionary algorithm called Parallel Criterion-based Partitioning MOEA (PCPMOEA), with an application to the Multiobjective Knapsack Problem (MOKP). The suggested search strategy is based on a periodic partitioning of potentially efficient solutions, which are distributed to multiple multiobjective evolutionary algorithms (MOEAs). Each MOEA is dedicated to a sole objective, in which it combines both criterion-based and dominance-based approaches. The suggested algorithm addresses two main sub-objectives: minimizing the distance between the current non-dominated solutions and the ideal point, and ensuring the spread of the potentially efficient solutions. Experimental results are included, where we assess the performance of the suggested algorithm against the above mentioned sub-objectives, compared with state-of-the-art results using well-known multi-objective metaheuristics.  相似文献   

11.
Multi-objective evolutionary optimization algorithms are among the best optimizers for solving problems in control systems, engineering and industrial planning. The performance of these algorithms degrades severely due to the loss of selection pressure exerted by the Pareto dominance relation which will cause the algorithm to act randomly. Various recent methods tried to provide more selection pressure but this would cause the population to converge to a specific region which is not desirable. Diversity reduction in high dimensional problems which decreases the capabilities of these approaches is a decisive factor in the overall performance of these algorithms. The novelty of this paper is to propose a new diversity measure and a diversity control mechanism which can be used in combination to remedy the mentioned problem. This measure is based on shortest Hamiltonian path for capturing an order of the population in any dimension. In order to control the diversity of population, we designed an adaptive framework which adjusts the selection operator according to diversity variation in the population using different diversity measures as well as our proposed one. This study incorporates the proposed framework in MOEA/D, an efficient widely used evolutionary algorithm. The obtained results validate the motivation on the basis of diversity and performance measures in comparison with the state-of-the-art algorithms and demonstrate the applicability of our algorithm/method in handling many-objective problems. Moreover, an extensive comparison with several diversity measure algorithms reveals the competitiveness of our proposed measure.  相似文献   

12.
进化多目标优化中由于进化算子固有的随机误差以及进化过程中选择压力和选择噪音的影响使得进化群体容易丧失多样性,而保持进化群体的多样性不仅有利于进化群体搜索,而且也是多目标优化的重要目标。对多目标进化算法的多样性策略进行了分类,在统一的框架下描述了各种策略的机制,并分析了各自的特性。随后,分析并比较了多样性保持算子的复杂度。最后,证明了一般意义下多目标进化算法的收敛性,指出在设计新的多样性策略中需要保证进化世代间的单调性,避免出现退化现象。  相似文献   

13.
This paper introduces a software tool based on illustrative applications for the development, analysis and application of multiobjective evolutionary algorithms. The multiobjective evolutionary algorithms tool (MOEAT) written in C# using a variety of multiobjective evolutionary algorithms (MOEAs) offers a powerful environment for various kinds of optimization tasks. It has many useful features such as visualizing of the progress and the results of optimization in a dynamic or static mode, and decision variable settings. The performance measurements of well-known multiobjective evolutionary algorithms in MOEAT are done using benchmark problems. In addition, two case studies from engineering domain are presented.  相似文献   

14.
In practical multi-objective optimization problems, respective decision-makers might be interested in some optimal solutions that have objective values closer to their specified values. Guided multi-objective evolutionary algorithms (guided MOEAs) have been significantly used to guide their evolutionary search direction toward these optimal solutions using by decision makers. However, most guided MOEAs need to be iteratively and interactively evaluated and then guided by decision-makers through re-formulating or re-weighting objectives, and it might negatively affect the algorithms performance. In this paper, a novel guided MOEA that uses a dynamic polar-based region around a particular point in objective space is proposed. Based on the region, new selection operations are designed such that the algorithm can guide the evolutionary search toward optimal solutions that are close to the particular point in objective space without the iterative and interactive efforts. The proposed guided MOEA is tested on the multi-criteria decision-making problem of flexible logistics network design with different desired points. Experimental results show that the proposed guided MOEA outperforms two most effective guided and non-guided MOEAs, R-NSGA-II and NSGA-II.  相似文献   

15.
16.
陈晓纪  石川  周爱民  吴斌 《软件学报》2019,30(12):3651-3664
在多目标进化算法中,如何从后代候选集中选择最优解,显著地影响优化过程.当前,最优解的选择方式主要是基于实际目标值或者代理模型估计目标值.然而,这些选择方式往往是非常耗时或者存在精度差等问题,特别是对于一些实际的复杂优化问题.最近,一些研究人员开始利用有监督分类辅助后代选择,但是这些工作难以准备准确的正例和负例样本,或者存在耗时的参数调整等问题.为了解决这些问题,提出了一种新颖的融合分类与代理的混合个体选择机制,用于从后代候选集中选择最优解.在每一代优化中,首先利用分类器选择优良解;然后设计了一个轻量级的代理模型用于估计优良解的目标值;最后利用这些目标值对优良解进行排序,并选择最优解作为后代解.基于典型的多目标进化算法MOEA/D,利用混合个体选择机制设计了新的算法框架MOEA/D-CS.与当前流行的基于分解多目标进化算法比较,实验结果表明,所提出的算法取得了最好的性能.  相似文献   

17.
In this paper, we propose and investigate a new local search strategy for multiobjective memetic algorithms. More precisely, we suggest a novel iterative search procedure, known as the Hill Climber with Sidestep (HCS), which is designed for the treatment of multiobjective optimization problems, and show further two possible ways to integrate the HCS into a given evolutionary strategy leading to new memetic (or hybrid) algorithms. The pecularity of the HCS is that it is intended to be capable both moving toward and along the (local) Pareto set depending on the distance of the current iterate toward this set. The local search procedure utilizes the geometry of the directional cones of such optimization problems and works with or without gradient information. Finally, we present some numerical results on some well-known benchmark problems, indicating the strength of the local search strategy as a standalone algorithm as well as its benefit when used within a MOEA. For the latter we use the state of the art algorithms Nondominated Sorting Genetic Algorithm-II and Strength Pareto Evolutionary Algorithm 2 as base MOEAs.   相似文献   

18.
Due to the large objective space when handling many-objective optimization problems (MaOPs), it is a challenging work for multi-objective evolutionary algorithms (MOEAs) to balance convergence and diversity during the search process. Although a number of decomposition-based MOEAs have been designed for the above purpose, some difficulties are still encountered for tackling some difficult MaOPs. As inspired by the existing decomposition approaches, a new Hybridized Angle-Encouragement-based (HAE) decomposition approach is proposed in this paper, which is embedded into a general framework of decomposition-based MOEAs, called MOEA/D-HAE. Two classes of decomposition approaches, i.e., the angle-based decomposition and the proposed encouragement-based boundary intersection decomposition, are sequentially used in HAE. The first one selects appropriate solutions for association in the feasible region of each subproblem, which is expected to well maintain the diversity of associated solutions. The second one acts as a supplement for the angle-based one under the case that no solution is located in the feasible region of subproblem, which aims to ensure the convergence and explore the boundaries. By this way, HAE can effectively combine their advantages, which helps to appropriately balance convergence and diversity in evolutionary search. To study the effectiveness of HAE, two series of well-known test MaOPs (WFG and DTLZ) are used. The experimental results validate the advantages of HAE when compared to other classic decomposition approaches and also confirm the superiority of MOEA/D-HAE over seven recently proposed many-objective evolutionary algorithms.  相似文献   

19.
To solve many-objective optimization problems (MaOPs) by evolutionary algorithms (EAs), the maintenance of convergence and diversity is essential and difficult. Improved multi-objective optimization evolutionary algorithms (MOEAs), usually based on the genetic algorithm (GA), have been applied to MaOPs, which use the crossover and mutation operators of GAs to generate new solutions. In this paper, a new approach, based on decomposition and the MOEA/D framework, is proposed: model and clustering based estimation of distribution algorithm (MCEDA). MOEA/D means the multi-objective evolutionary algorithm based on decomposition. The proposed MCEDA is a new estimation of distribution algorithm (EDA) framework, which is intended to extend the application of estimation of distribution algorithm to MaOPs. MCEDA was implemented by two similar algorithm, MCEDA/B (based on bits model) and MCEDA/RM (based on regular model) to deal with MaOPs. In MCEDA, the problem is decomposed into several subproblems. For each subproblem, clustering algorithm is applied to divide the population into several subgroups. On each subgroup, an estimation model is created to generate the new population. In this work, two kinds of models are adopted, the new proposed bits model and the regular model used in RM-MEDA (a regularity model based multi-objective estimation of distribution algorithm). The non-dominated selection operator is applied to improve convergence. The proposed algorithms have been tested on the benchmark test suite for evolutionary algorithms (DTLZ). The comparison with several state-of-the-art algorithms indicates that the proposed MCEDA is a competitive and promising approach.  相似文献   

20.
A convergence acceleration operator (CAO) is described which enhances the search capability and the speed of convergence of the host multiobjective optimization algorithm. The operator acts directly in the objective space to suggest improvements to solutions obtained by a multiobjective evolutionary algorithm (MOEA). The suggested improved objective vectors are then mapped into the decision variable space and tested. This method improves upon prior work in a number of important respects, such as mapping technique and solution improvement. Further, the paper discusses implications for many-objective problems and studies the impact of the use of the CAO as the number of objectives increases. The CAO is incorporated with two leading MOEAs, the non-dominated sorting genetic algorithm and the strength Pareto evolutionary algorithm and tested. Results show that the hybridized algorithms consistently improve the speed of convergence of the original algorithm while maintaining the desired distribution of solutions. It is shown that the operator is a transferable component that can be hybridized with any MOEA.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号