首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
针对砂砾岩油藏非均质性强的特点,提出了一种原位乳化提高采收率技术,对新型W/O型乳化体系(DMS)开展了乳化性能、降低界面张力性能以及驱油性能研究,同时与油田现场用聚合物-表面活性剂二元体系进行了对比。实验结果表明:不同含水率下DMS能够与原油发生乳化形成W/O型乳液,随着含水率的增大,乳液黏度增高,在含水率为70%时黏度达到最大值,为原油黏度的9倍,远高于二元体系的黏度,流度控制能力更强;DMS能够定向吸附于油水界面,将油水界面张力降低至0.12 mN/m;受拉伸卡断作用,在DMS的作用下油水发生原位乳化形成W/O型乳液,乳液粒径为0.5~6.0μm;砂砾岩岩心进行DMS驱以及后续水驱能够提高采收率18.6%,当渗透率级差为10时,二元驱及后续水驱能提高采收率24.0%,而DMS驱以及后续水驱能够提高采收率35.3%,表现出更好的流度控制以及吸水剖面改善能力。研究结果为砂砾岩油藏提高采收率提供理论支撑。  相似文献   

2.
稠油油藏聚驱后二元复合驱提高采收率研究   总被引:1,自引:0,他引:1  
针对古城油田泌123断块稠油油藏条件,考察了SP二元复合体系的最佳配方、乳化性和热稳定性,并用最佳配方的SP二元复合体系进行了聚合物驱后复合驱替实验。实验结果表明,得到的最佳SP二元复合体系(2000 mg/L ZL-I+3000 mg/L OCSB)的黏度为59.5 mPa.s、界面张力7.87×10-3 mN/m,与聚合物溶液相比,黏度上升2 mPa.s、界面张力下降3~4个数量级,毛管数大幅度提高,具备更大幅度提高采收率的能力。SP二元复合体系与原油形成的乳化液黏度大于二元体系的黏度,乳化作用良好,可以进一步改善流度比。60℃下老化120天后SP二元复合体系中HPAM的水解度缓慢上升后维持在30%~40%,黏度始终保持平稳上升,变化规律与单一聚合物溶液相似;界面张力值在老化期间上升半个数量级以内,盐析程度较单一表面活性剂溶液大幅改善。岩心驱油实验表明,聚合物驱后进行二元复合驱可提高采收率10%OOIP以上,说明古城油田泌123断块稠油油藏采用二元复合驱作为聚合物驱后提高采收率的接替技术是可行的。图4表3参5  相似文献   

3.
为探究低渗透油藏微乳液驱微观剩余油的驱替机理,以大庆油田低渗透岩心为研究对象,通过微乳液驱油和岩心微观解剖实验,验证了微乳液驱提高原油采收率的效果,并对微乳液驱后的剩余油分布规律进行了研究。利用显微镜观察光刻玻璃模型中的驱油过程,重点研究了微乳液驱过程中残余油的启动和运移机理。结果显示:界面张力低的微乳液驱油效果好,与水驱相比,采收率提高26.38个百分点;对于同一半径的孔隙而言,界面张力越低,含剩余油孔隙比例越小。研究表明,降低残余油的启动难度,并将原油乳化成小液滴,是微乳液驱替残余油最主要的机理。该项研究证明了低渗透油藏微乳液驱油的可行性,从微观上对微乳液的驱油效果做出科学解释,有助于推动微乳液三次采油理论的完善。  相似文献   

4.
针对华北别古庄油田京11断块油藏储集层黏土含量高(29%)、地层原油黏度低(11.0 mPa·s)、酸值低(0.28 mgKOH/g原油)、油藏温度低(54 ℃)、水驱采收率高(> 50%)等特点,优化出适合该油藏的三元复合体系:1 500 mg/L聚合物J4+3 000 mg/L表面活性剂ES+12 000 mg/L碳酸钠。开展了该复合体系热稳定性、老化、吸附等评价实验。结果表明,体系老化90 d和天然岩心砂三次吸附后,热稳定性较好(黏度保持率为50.6%),仍能达到10-3 mN/m超低界面张力。采用高低渗透率双管模型,开展了老化前后复合体系驱油实验对比研究。在综合含水90%时,改注0.3 PV未老化复合体系,综合采收率提高31.1百分点;改注0.3 PV老化90 d后的三元复合体系,综合采收率提高22.2百分点,比老化前降低8.9百分点,说明三元复合体系老化后对驱油效果有较大影响。分析发现体系老化后黏度降低较多、界面张力升高,是导致驱油效率下降的原因。研究结果对今后体系优化具有一定指导作用,体系优化中分别测定不同体系老化前后的黏度和界面张力,根据其变化情况即可最终优化出较佳的复合驱油体系。  相似文献   

5.
ASP体系在二类油层中运移不同距离时,体系的黏度和及其与原油间的界面张力等均会发生变化。本实验采用不同长度的人造岩心(10、20、30、60和80 cm)来模拟ASP体系在油藏中的运移距离,通过测定各组实验产出液的黏度及其与原油间界面张力,分析ASP体系运移不同距离时体系性能的变化及其对采收率的影响。实验结果表明,随着ASP驱油剂运移距离的增大,复合驱采收率逐渐降低,且在近井地带附近采收率降低的幅度较大。复合驱采收率受复合体系的黏度和其与原油界面张力影响,在0~30 cm运移范围内,由于超低界面张力和较强流度控制能力的综合作用,驱油剂在油藏中的波及体积和驱油效率较大,复合驱采收率和最终采收率较高;当运移距离大于30 cm时,由于界面张力值迅速升高,其对采收率的贡献较小,此时体系的黏度在驱油过程中起着主导作用;复合驱采收率随着驱油剂相对注入量的增大而增加,适当地增大ASP驱油剂的相对注入量可有效的提高大庆二类油层的采收率。  相似文献   

6.
为提高扶余油田中低渗普通稠油油藏原油采收率,开展了乳化降黏技术研究,考察了乳化剂加量、油水体积比和剪切速度对所形成的乳状液状态与性能的影响,研究了相同黏度聚合物段塞和乳化剂/聚合物二元段塞的驱油效率,分析了乳化复合驱提高采收率的机理。结果表明,随着乳化剂质量分数增大,乳液黏度先减小后增 大,乳液粒度逐渐减小;对于扶余稠油,乳化剂最佳质量分数为0.3%,在此条件下,油水体积比低于55∶45 时可产生O/W型乳液;随剪切速度增大,乳液黏度先降低后增加,剪切速度为45 cm/min 时乳液为O/W型,剪切速度为450 cm/min 时乳液变为W/O 型;水驱后分别注入聚合物和乳化剂/聚合物二元段塞,采收率分别提高10.5%和25.4%。乳化复合驱不仅能扩大波及体积,还能降低油水界面张力,乳化原油,提高驱油效率。图8 表2 参16  相似文献   

7.
高温低渗油藏表面活性剂驱影响因素研究   总被引:2,自引:0,他引:2  
为改善高温低渗油藏开发效果,开展了表面活性剂驱影响因素研究。通过在114℃条件下,对亲水、亲油低渗岩心进行表面活性剂驱油实验,考察了界面张力、乳化作用、润湿反转以及注入时机对注入压力、驱油效率等的影响。研究结果表明,表面活性剂体系与原油间的界面张力越低,提高驱油效率和降低注入压力的幅度越大。表面活性剂的乳化速率越高,原油采收率越高;乳化降黏能力越强,降压效果越好;同时,适当降低乳状液稳定性也对驱油有利。表面活性剂的润湿反转作用使其能在较高界面张力下有效驱油,并在亲油岩心中获得较亲水岩心更好的增油降压效果。此外,在中等含水阶段进行表面活性剂驱,能够利用最低的投入获得最高的原油采收率。  相似文献   

8.
以石油烃类为唯一碳源提高采收率菌种的研究   总被引:15,自引:1,他引:15  
筛选的以烃类为碳源的菌种U1-6、FN、LD、Bs等9株菌经过了室内生化特性、产生活性物质乳化原油的能力,物理模拟等详细的评价。原油在菌种作用后轻质组分增加,原油的族组成发生了变化,粘度下降,有机酸的含量增加,界面张力下降,岩心物理模型驱油实验在天然岩心、长管填充油砂、胶结模型三种类型中证明微生物驱比水驱提高采收率10%左右。并有较好的重复性,微观模型实验可以直接地观察微生物对原油的乳化与使残余油移动的情况。  相似文献   

9.
通过微观驱油实验、岩心驱油实验及渗流理论分析,明确了水驱微观渗流规律,量化了水驱后微观剩余油分布特征,提出了改善水驱效果及提高采收率方法机理。水驱后剩余油启动需要克服启动压力,按照驱油机理划分,水驱后剩余油可划分为受黏附力控制的剩余油和受毛管力、黏滞力控制的剩余油2种类型,其中受毛管力和黏滞力控制的剩余油占90%以上。通过增加驱替压力梯度、降低界面张力启动和增加驱替体系黏度可以提高油层采收率。  相似文献   

10.
针对河南双河油田Ⅵ油组90℃以上高温油藏条件,提出了由表面活性剂SH7与聚合物1630S组成的适合该油藏条件的SP二元复合驱油体系,研究了该二元驱油体系的界面性能、乳化性能、热稳定性能、抗吸附性能及驱油性能。结果表明,SP二元复合驱油体系(1630S浓度1500 mg/L)在SH7浓度高于500 mg/L时油水界面张力可达10~(-3)mN/m超低数量级,SH7浓度高于1000 mg/L后,界面张力可达10~(-4)mN/m数量级,且在30 min内即达到超低。组成为1500 mg/L 1630S+2000 mg/L SH7的SP二元复合体系的乳化性能良好,油水比为7∶3时乳状液黏度是SP二元复合体系的7倍以上。该SP二元复合体系的抗岩心吸附性能良好,在经历五次吸附后,油水界面张力仍可达8.82×10~(-4)mN/m。当体系中氧含量低于0.8 mg/L时,聚合物及SP二元复合体系的长期热稳定良好,95℃下老化180 d后的体系黏度仍高于初始值,油水界面张力可以保持在10~(-4)mN/m数量级。均质岩心驱油实验结果表明,水驱后注入0.606 PV的SP二元复合体系,在水驱(采收率42.26%)基础上可提高采收率22.16%,较同等条件下的聚合物驱高出6个百分点。三倍渗透率级差层内非均质岩心驱油实验结果表明,SP二元复合体系的最佳段塞尺寸为0.6 PV,在水驱基础上提高采收率16.23%。  相似文献   

11.
针对葡北油田的油层特点和高含水开发阶段后期进一步提高原油采收率的要求,在室内进行了聚表剂性能评价,研究了水驱极限含水条件下聚表剂的合理注入参数和驱油效果.通过与普通中分聚合物进行对比发现,聚表剂具有低浓高黏和降低界面张力的能力.室内驱油实验结果表明,选定0.57 PV段塞情况下,聚表剂的驱油效果要比普通中分聚合物驱油效果好,水驱之后聚表剂驱油的采收率达到10%以上.结合葡北油层渗透率较低的实际情况,建议选用的体系黏度为30 mPa·s,此时Ⅲ型聚表剂相应的浓度为600 mg/L,注入段塞大小为0.57 PV,原油采收率的提高值为11.69%.  相似文献   

12.
为实现清洁压裂液返排液体系的重复利用,针对一类新型纳米复合清洁压裂液体系展开室内研究,评价了返排液作为驱油体系的界面活性、润湿性、乳化性能以及吸附性能。在此基础上,对驱油体系提高低渗透油藏岩心水驱后的采收率进行了研究。结果表明:在驱油体系质量分数为0.08%,温度为60℃的条件下,与脱气原油之间的界面张力即可达到10-3m N/m数量级,可以使稠油黏度降低率达到95%以上,并具有良好的乳化性能;驱油体系能够使亲水岩石表面转变为中性润湿;驱油体系中的表面活性剂在岩心中的最终滞留量为2.8 mg/g,而纳米颗粒的滞留量为8.8mg/g。岩心模拟驱油实验结果说明,驱油体系可以使饱和脱气原油低渗岩心水驱后的采收率平均提高17.26%,取得了良好的驱油效果。矿场试验结果表明,增油效果显著。  相似文献   

13.
对低渗透油藏注入性差、洗油效率低,水驱无法有效提高采收率等问题,提出了一种低界面张力小分子 驱油剂(LST溶液)提高低渗透油藏采收率新技术,评价了该驱油剂的界面活性、增黏性、乳化性、润湿性及其油 藏环境适应性和驱油效果。结果表明,该驱油剂具有良好的界面活性和增黏性。在6788.23mg/L的矿化水中, 质量分数为0.4%时的LST溶液的油水界面张力为0.012mN/m,且黏度与油藏原油黏度(3.4mPa·s)相近。LST 溶液具有较好的油水乳化能力,可改善油藏水润湿性。在47.2℃、油水比为1∶1的条件下,LST乳状液的稳定时 间为120min。岩心经LST溶液处理后,水相接触角由57.0°降至12.5°,油相接触角由24.3°增至38.6°。LST溶液 具有良好的静态抗吸附性能,经岩心3次吸附后,LST残液与原油间的界面张力仍能达到10-2mN/m数量级,黏度 达2.895 mPa·s,乳状液静置10、120min的析水率分别为38.6%、73.4%。LST溶液的耐盐性能较好。在矿化度为 16 570 mg/L的环境下,其油水界面张力低于7×10-2mN/m、黏度为3.06mPa·s。LST溶液的驱油效果较好,可有 效封堵高渗透孔道,启动低渗透孔道残余油。注入0.4PV0.4%LST溶液可使均质岩心(0.05μm2)的水驱驱油 效率提高11.21百分点,非均质岩心(级差3~10)水驱后的综合采收率提高6.55百分点~19.41百分点。LST 溶液可以实现低剂量或低成本有效提高水驱采收率,在低渗透非均质油藏化学驱提高采收率方面具有较好的 应用前景。  相似文献   

14.
二元复合驱能够大幅度提高水驱后油藏采收率,为深化二元复合体系提高采收率机理认识,开展二元复合体系界面活性与乳化性能协同提高采收率研究。通过物理模拟实验、微观可视化驱替实验和核磁共振实验,研究具有不同界面活性和乳化性能二元复合体系的驱油效果,明确渗流过程中其界面活性变化规律,阐明油水界面张力与乳化性能协同提高采收率机理。结果表明,由于油藏的非均质性及驱油体系性能变化,二元复合体系与原油界面张力并非越低越好。过高界面张力不利于洗油效率的提高,而过低界面张力不利于乳化作用的发挥。当油水界面张力与乳化性能配伍关系良好时,二元复合体系既可以利用较低界面张力启动油藏深部残余油,又可以通过残余油滴封堵大孔道,改变油藏深部流场分布,降低非优势层剩余油饱和度,实现大幅度提高采收率的目标。  相似文献   

15.
通过实验研究对比了三种纳米流体驱与水驱对稠油采收率的影响,同时研究了纳米流体对乳液界面张力和黏度的影响,实验结果表明,原油与纳米流体的界面张力随着纳米流体的浓度的增加而减小,质量分数为0.05%的Al2O3纳米流体能显著降低乳液的黏度,与其它纳米流体相比,0.05%的Al2O3纳米流体增加的采收率最大。  相似文献   

16.
针对低渗透油藏渗透性差、孔喉狭小和岩层致密等特点,研制了片状2-D智能纳米黑卡驱油体系。研究了2-D智能纳米黑卡的微观结构、润湿性、界面性质、稳定性、乳化降黏性,通过一维岩心驱替实验考察了岩心渗透率、纳米黑卡浓度以及原油黏度对2-D智能纳米黑卡溶液驱油效果的影响。研究结果表明,纳米黑卡尺寸约为60 nm×80 nm×1.2 nm,其与油水界面形成"面-面"接触,界面作用极强。纳米黑卡比表面积大,能在水相中均匀分散,可发挥润湿反转、乳化降黏、降低界面张力、降压增注等多重功效。岩心驱替实验结果表明,岩心渗透率、纳米黑卡浓度和原油黏度对驱油效果均有影响。在岩心渗透率为25×10-3μm2、纳米黑卡加量为0.005%和原油黏度为25 mPa·s时,2-D智能纳米黑卡溶液的驱油效果较好,原油采收率增幅为18.10%。片状2-D智能纳米黑卡可充分发挥"智能找油"功能,适用于低渗透油藏提高驱油效率。图10表2参28  相似文献   

17.
三元复合驱是进一步大幅度提高原油采收率的重要方法之一,目前已进入工业化推广阶段,但仍存在注采系统结垢及生产维护成本较高等问题。根据大庆油田三元复合驱的强碱、弱碱和无碱化战略部署,用氯化钠代替碳酸钠研发出无碱三元体系,但其乳化能力弱,采收率提高值比弱碱三元体系低2%~3%。为提高无碱三元体系的乳化性能,提升驱油效果,以无碱三元体系为基础,采用E表面活性剂与石油磺酸盐复配,研发出大庆油田无碱三元乳化驱油体系。体系不添加醇和助剂,且在表面活性剂质量分数较低(0.3%)时能够与大庆原油形成WinsorⅢ型中相微乳液。进一步研究表明,其增黏性、界面活性、黏度及界面张力稳定性、抗吸附性能与弱碱三元体系基本一致。驱油实验结果表明该体系具有注入能力强、色谱分离弱、乳化能力强的特点,可比水驱提高采收率41.12%,较弱碱三元体系增加提高采收率11.25%。根据室内研究结果,初步测算该体系吨油化学剂成本较弱碱三元体系下降42.90%。研发出的大庆油田无碱三元乳化驱油体系不仅实现了三元复合驱无碱化的目标,而且实现了从超低界面张力复合驱到低浓度中相微乳液驱的跨越,达到了大幅度提高采收率和降本增效的目的,具有广...  相似文献   

18.
为研究砾岩油藏乳化程度与二元复合驱采收率的关系,通过乳化(调节表面活性剂的加量)调控驱油体系乳化强度以及乳化体系在长岩心中的运移规律,研究了不同乳化强度的部分水解聚丙烯酰胺/环烷基石油磺酸盐表面活性剂(KPS)二元体系的驱油效果,明确了乳化程度对提高采收率的作用。结果表明,油水界面张力为5×10-2mN/m的中等乳化二元体系的驱油效率比5×10-3mN/m无乳化体系的高8%。当二元体系达到临界黏度后,油水界面张力为5×10-2 mN/m数量级、乳化综合指数适宜的乳状液对驱油体系黏度具有补偿作用,能够长距离保持驱油体系黏度的稳定性,有利于进一步提高采收率。砾岩油藏二元复合驱多因素耦合提高采收率决策中,在渗透率极差较大时通过调节驱油体系黏度比和乳化综合指数可实现提高采收率;渗透率级差≤6时,通过界面张力和乳化综合指数调控实现大幅度提高采收率。当剩余油饱和度小于50%时,乳化综合指数控制在50%~70%;剩余油饱和度大于50%时,乳化综合指数控制在30%~50%。在新疆某区块实施"低界面张力和可控乳化"二元复合驱技术,采收率提...  相似文献   

19.
超低渗油藏开发主要靠压裂渗吸开采基质原油,但通常水驱渗吸采收率低,而表面活性剂复配可以提高渗吸采收率。通过对复配体系的性能分析,探讨表面活性剂体系复配对超低渗油藏渗吸采收率的影响规律。针对阴离子表面活性剂HABS、非离子表面活性剂APG1214及两者复配体系,采用渗吸瓶试法测定不同体系处理岩心的渗吸采收率效果;研究了渗吸体系与原油之间的界面张力、岩心经渗吸体系浸泡前后的接触角变化、体系乳状液稳定性3种因素对采收率的影响。结果表明,岩心在复配体系中的自发渗吸采收率最高(10.43%),而HABS体系仅为4.57%,KCl体系只有2.2%,APG1214体系不能发生渗吸。复配体系与原油间的界面张力能达到10-2mN/m数量级,并可将强水湿岩心转变为润湿角接近90o的弱亲油岩心,同时复配体系易与油生成乳液且乳液易聚并。岩心驱油实验中,复配体系的注入压力最小,采收率增幅最大。超低渗油藏渗吸采油率的提高需要低界面张力、偏中性润湿的超低渗岩心,易生成可聚并的乳状液,乳状液过于稳定不利于渗吸采油。图4表2参16  相似文献   

20.
表面活性剂 SDCM-1为天然羧酸盐的氧乙烯基化产物.用矿化度4.5 g/L的矿化水配制的SDCM-1溶液,与孤岛河滩区原油之间的最低界面张力(70℃),在SDCM-1浓度大于1.0 g/L时达到10-4 mN/m数量级.2.0 g/LSDCM-1 1.6 g/L HPAM溶液黏度超过原油黏度(70℃),与原油间的界面张力(70℃)在56 min时可降至稳定的最低值3.2×100mN/m,此即为所选二元复合驱配方.在岩心驱油实验中,水驱后、注聚后(1.6mg/L,0.3 PV)、注二元复合体系(0.3 PV)并水驱后采收率分别为42.31%,5.21%,18.07%.在平板夹砂模型上采用相同工艺驱油,按所撮图像驱替面积测算各驱替液波及体积,注入水为51%,聚合物为48%,0.1、0.2、0.3 PV二元复合体系分别为54%、60%、64%,后续注入水为68%;用软件计算的水驱、注聚后、二元复合驱并水驱采收率,分别为44%,8%,16%.该体系是可用于聚驱后油藏的高效表聚二元复合驱油体系.图9表1参14.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号