首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Indium tin oxide (ITO) films deposited by DC magnetron sputtering were annealed under CdCl2 atmosphere at different temperatures. The effects of CdCl2 heat-treatment on the structural, electrical and optical properties of the films were investigated. The X-ray diffraction measurement proves the annealing results in a change of preferred orientation from (400) to (222). It is found the resistivity increases from 1.49 × 10−4 Ω cm of the as-deposited film to 6.82 × 10−4 Ω cm of the film annealed at 420 °C. The optical energy gap for the film varies from 3.97 to 3.89 eV. It is also found that the CdCl2 heat-treatment results in narrowing the energy gap of ITO film.  相似文献   

2.
In this work, a systematic research on CdS annealing treatments under various atmospheres had been done to understand their effects on CdS/CdTe solar cells. CdS films were prepared by a standard CBD method and annealed under various atmospheres, including Ar, Ar+H2, O2, Ar+S and Ar+CdCl2. Morphological, structural, optical and chemical properties were investigated using Atom force microscope (AFM), X-ray diffraction (XRD), UV–VIS spectroscopy and X-ray photoelectron spectroscopy (XPS). Annealing treatments enhanced modifications of morphology, structure and electrical properties of CdS films. AFM showed different surface morphologies and roughnesses of CdS films annealed under various atmospheres. XRD indicated the transition of CdS films from metastable cubic structure to stable hexagonal structure after annealing treatment, especially annealed in Ar+CdCl2. From XPS analysis, Fermi levels of CdS films shifted closer to conduction band after annealing under O2 and Ar+CdCl2, while the levels shifted away from conduction band under Ar+H2 and Ar+S. The relationships between those modifications by annealing treatments and effects on the performance of solar cells were discussed. Solar cell based on CdS annealed with Ar+CdCl2 had the best performance due to the high n-doping of CdS layer introduced by annealing process.  相似文献   

3.
Amorphous composite films, composed of a Ti1 − xVxO2 solid-solution phase and a V2O5 phase, were produced by chemical bath deposition and subsequently air-annealed at various temperatures up to 550 °C. The microstructure and chemical composition of the as-prepared and annealed films were investigated by a combinatorial experimental approach using Scanning electron microscopy, X-ray powder diffraction and X-ray photoelectron spectroscopy. Ultraviolet-Visible Spectrometry was applied to determine the optical band gap of the as-prepared and annealed films. It followed that the incorporation of vanadium in the as-deposited films reduces the optical band gap of TiO2 from about 3.8 eV to 3.2 eV. Annealing of the films up to 350 °C leads to slight increase of band gap, as attributed to a reduction of the defect density in the initially amorphous oxide films due to the gradual development of long-range order and a concurrent reduction of the V4+-dopant concentration in the Ti1 − xVxO2 solid-solution phase. The films crystallized upon annealing in air at 550 °C, which resulted in drastic changes of the phase constitution, optical absorbance and surface morphology. Due to the lower solubility of V4+ in crystalline TiO2, V4+ segregates out of the crystallizing Ti1 − xVxO2 solid-solution phase, forming crystalline V2O5 at the film surface.  相似文献   

4.
A preparatory technique for InP films is described. The composition, surface feature and structural characterizations of the as-deposited films indicated the formation of InP but with poor surface morphology. Annealing appears to change the surface topography and shows no improvement in the quality of the film. The optical and electrical studies of the as-deposited films showed them to be an n-type semiconductor with a band gap of 1.35 eV.  相似文献   

5.
Thin films of Cd0.9Zn0.1S and CdS were prepared by thermal evaporation under vacuum of 10–6 Torr and with deposition rate of 60 nm/min. X ray diffraction studies confirm the hexagonal structure of both CdS and Cd0.9Zn0.1S films. The effect of heat treatments with or without CdCl2 enhances the grain size growth and improves the crystalline of the films. Moreover, the activation energy is decreased by heat treatment with or without CdCl2 for all thin films. The optical absorption coefficient of Cd0.9Zn0.1S thin films were determined from measured transmittance and reflectance in the wavelength range of 300 to 2500 nm. The optical absorption spectra reveal the existence of direct energy gap for these films. It was found that the optical energy gap decreases upon annealing or CdCl2 treatments.  相似文献   

6.
This article presents the deposition and characterization of CdS and CdHgTe thin films for the fabrication of CdHgTe/CdS structure. The growth of CdS and CdHgTe thin films on FTO-coated conducting glass substrates have been performed by chemical bath deposition (CBD) and electrodeposition methods, respectively. The deposition conditions have been optimized for getting better quality layers of CdS and CdHgTe. The grown layers of both CdS and CdHgTe have been characterized by photoelectrochemical cell (PEC) measurement, X-ray diffraction (XRD), scanning electron microscopy (SEM) and UV–vis spectrophotometer. Annealing effect of the deposited films has also been investigated. Finally the fabrication of CdHgTe/CdS structure has been performed and investigated by I–V characteristics. PEC, XRD, SEM and UV–vis spectrophotometer studies reveal that chemically deposited CdS layers are n-type with band gap values vary from 2.29 to 2.41 eV and cubic with (111) preferential orientation, and have spherical grain distributed over the surface. However, electrodeposited CdHgTe layers are p-type with band gap values varying from 1.50 to 1.53 eV and cubic with highly oriented CdHgTe crystallites with the (111) planes parallel to the substrate, and have uniform distribution of granular grains over the surface. The fabricated CdHgTe/CdS structure gave an open-circuit photovoltage and a short-circuit photocurrent of 510 mV and 13 mA/cm2 respectively, under AM 1.5 illumination.  相似文献   

7.
Effects of the thickness of CdCl2 layer and the annealing on structural and optical properties of sputter-deposited CdS films were investigated. The annealing process of evaporated CdCl2 was carried out by heating the sample in air at 350-500 °C for 20 min. As the thickness of the CdCl2 increases, the (002) peak of CdS becomes weak and the other peaks of CdS increases. Especially, for 200 nm CdCl2, the preferential orientation of the (002) plane disappears and the c-axis of the CdS film tends to orient parallel to the substrate. As the CdCl2 layer is thicker, the grains are enlarged significantly. The improvement of optical properties of CdS films with thicker CdCl2 layer might be successfully employed in achieving better conversion efficiencies in solar cells.  相似文献   

8.
Chemical method has been used to prepare cadmium sulphide by using cadmium, hydrochloric acid and H2S. The reflection spectra of covered and uncovered sintered films of CdS have been recorded by ‘Hitachi spectrophotometer’ over the wavelength range 300–700 nm. The energy band gaps of these films have been calculated from reflection spectra. It is found that the energy band gap of both films is same as 2.41 eV. It is indicated that energy band gap of these films does not change. This value of band gap is in good agreement with the value reported by other workers. The measurement of photocurrent has also been carried out using Keithley High Resistance meter/ Electrometer. This film shows the high photosensitivity and high photocurrent decay. Thus so obtained films are suitable for fabrication of photo detectors and solar cells.  相似文献   

9.
The electrodeposition of zinc telluride thin films on tin conductive oxide substrates in aqueous solution containing TeO2 and ZnCl2 was studied. The electrodeposition mechanism was investigated by cyclic-photovoltammetry. The appropriate potential region where formation of stoichiometric ZnTe semiconductor occurs, was found to be close to -0.75 V vs. SCE. Annealing of the as-deposited films was carried out at 400°C to obtain a crystalline phase. The crystallographic structure and film morphology were studied by XRD and SEM analyses, respectively. ZnTe films have the hexagonal structure of wurtzite and they are characterized by good homogeneity. A direct energy gap of 2.25 eV was determined by NIR-VIS-UV spectroscopy, in close agreement with the energy gap of ZnTe single crystals. A fractal dimension of 2.4 was determined by AFM analysis of ZnTe films. The mechanism of the thin film growth has been interpreted in terms of diffusion limited aggregation model.  相似文献   

10.
CdTe thin films were prepared by thermal evaporation under a vacuum of 10−6 Torr and with a deposition rate of about 60 nm/min. X-ray diffraction studies of the as-deposited films revealed polycrystalline films with cubic structure. The effect of heat treatment with or without CdCl2 enhances the grain size and improves the crystallinity of the films. Moreover, the activation energy decreases upon heat treatment with or without CdCl2 for CdTe thin films. The optical spectra of CdTe films show interference oscillations indicating the good optical quality of these films. The calculated energy gap decreases with or without CdCl2 treatments. The current-voltage and capacitance-voltage characteristics for dark and illuminated three junction cells are measured. By analysing these measurements the different junction parameters are obtained and the effect of CdCl2 treatment on the performance of the heterojunctions is investigated.  相似文献   

11.
《Vacuum》2012,86(3):303-305
High-quality Cd1−xMnxTe polycrystalline films with (1 1 1) preferred orientation were deposited by close-spaced sublimation (CSS) method. The XRD and optical absorption analysis indicated that the band gap of the film was about 1.6 eV. The as-grown Cd1−xMnxTe films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. The effect of various post-deposition treatments with vapors of chlorine-containing materials (CdCl2 and/or MnCl2), in Ar or H2/Ar ambient, on the properties of Cd1−xMnxTe cells was studied.  相似文献   

12.
The influence of oxygen and annealing in the presence of CdCl2 on the photoluminescence (PL) spectra of CdTe, component of SnO2/CdTe heterojunction (HJ), has been studied in a temperature range of 17-100 K. The changes in the photoluminescence spectra were studied as a function of excitation intensity. Analysis of the PL spectra was carried out with considerations of spectra obtained from CdS/CdTe heterojunctions. CdTe side PL (SnO2/CdTe HJ) consisted of 1.450 eV-DA defect band and 1.243 eV band (17 K). Annealing resulted in the disappearance of 1.243 eV band in oxygen containing samples. Interface PL for the unannealed samples consisted of mainly the 1.264 eV and a trace of the defect band. The CdCl2 treatment is responsible for an almost symmetrical 1.416 eV band.  相似文献   

13.
CdS semiconductor films have been chemically prepared from a basic solution containing CdSO4, thiourea and NH4OH. X-ray diffraction studies have revealed the presence of polycrystalline mixed cubic and hexagonal phases of CdS in the deposit. The surface topography has been identified by SEM analysis and found to be non-uniform and spongy. Rutherford Backscattering Spectrometry (RBS) analysis gave the Cd to S ratio as 1.016 whereas that of Proton Induced X-ray Emission (PIXE) analysis gave the Cd to S ratio as 0.905. The band gap of the CdS film has been estimated from optical absorption studies and found to be 2.46 eV. The CdS/S2–, S2 2– interface has been characterized in order to identify the charge transfer process. Finally, Photoelectrochemical Solar Cells (PESCs) have been fabricated with cell configuration Ti/CdS/S2–, S2 2–/Pt and the results have been discussed.  相似文献   

14.
Magnesium nickel hydride films have earlier been suggested for several optoelectronic applications, but the optical properties and band gap have not been firmly established. In this work, the dielectric functions and the optical band gaps of thin films of Mg2NiH4 have been determined experimentally from optical modeling using spectroscopic ellipsometry and spectrophotometry in the photon energy range between 0.7 and 4.2 eV. Samples were prepared by reactive sputtering, resulting in a single-layer geometry that could easily be studied by ellipsometry. Crystalline samples were prepared by annealing the as-deposited amorphous films ex-situ. The resulting films remained in the high temperature cubic Mg2NiH4 structure even after cooling to room temperature. Tauc analysis of the dielectric functions shows that Mg2NiH4 films exhibit a band gap of 1.6 eV for the amorphous structure and 2.1 eV for the cubic crystalline structure.  相似文献   

15.
CdS thin films were prepared by chemical bath deposition technique using the precursors of SC(NH2)2, CdCl2, NH4Cl, NH3·H2O and deionized water. The obtained thin films were characterized by scanning electron microscopy, X-ray diffraction, energy dispersive spectrometer, UV–VIS specrophotometry and photoluminescence spectroscopy. The morphology, structural and optical properties of CdS thin films were investigated as a function of ammonia concentration and S/Cd molar ratios in precursors. The results reveal that morphology of CdS films change from flake like into spherical particle like, crystal structure from wurtzite structure to zinc blende structure, S/Cd atom ratios in CdS thin films increase and optical band gap E g decrease with increasing ammonia concentration in precursors. The room temperature photoluminescence spectrum of CdS thin films shows a strong peak at about 500 nm and a weak peak at about 675 nm.  相似文献   

16.
High-quality Cd1−xMnxTe polycrystalline films with (1 1 1) preferred orientation were deposited by close-spaced sublimation (CSS) method. The XRD and optical absorption analysis indicated that the band gap of the film was about 1.6 eV. The as-grown Cd1−xMnxTe films exhibit quite low photovoltaic performance when used to make cells with CdS as the hetero-junction partner. The effect of various post-deposition treatments with vapors of chlorine-containing materials (CdCl2 and/or MnCl2), in Ar or H2/Ar ambient, on the properties of Cd1−xMnxTe cells was studied.  相似文献   

17.
Copper–Indium (Cu–In) alloys with sulfur and selenium have technological importance in the development of thin film solar cell technology. We have used potentiostatic electrochemical technique with three-electrode geometry for the deposition of Cu–In alloy thin films in an aqueous electrolyte. Cathodic voltammetry (CV) was thoroughly studied to optimize the electrodeposition parameters. The deposition potential for Cu–In alloy was found to be in the range ?0.70 to ?0.85 V versus Ag/AgCl reference electrode. Polycrystalline CuxIny thin films were electrodeposited from aqueous bath at room temperature and 45 °C. Effect of concentration of citric acid was extensively studied by CV measurements. The as-deposited Cu–In films were characterized with a range of characterization techniques to study the structural, morphological, compositional and electrical properties. Thin layers of Cu–In were selenized in a homemade tubular furnace at 400 °C, which reveals the formation of polycrystalline CuInSe2 (CISe) thin films with tetragonal structure. The band gap of CISe thin film was estimated ~1.05 eV by optical absorption spectroscopy. Nearly stoichiometric CISe thin film, Cu = 25.25 %, In = 26.48 % and Se = 48.27 % was obtained after selenization. The linear behavior of current density–voltage (J–V) was observed for Cu–In alloy thin films whereas, the selenized Cu–In alloy films (CISe) possess rectifying properties.  相似文献   

18.
Successive ionic layer adsorption and reaction (SILAR) method has been successfully employed for the deposition of cadmium oxide (CdO) thin films. The films were annealed at 623 K for 2 h in an air and changes in the structural, electrical and optical properties were studied. From the X-ray diffraction patterns, it was found that after annealing, H2O vapors from as-deposited Cd(O2)0.88(OH)0.24 were removed and pure cubic cadmium oxide was obtained. The as-deposited film consists of nanocrystalline grains of average diameter about 20-30 nm with uniform coverage of the substrate surface, whereas for the annealed film randomly oriented morphology with slight increase in the crystallite size has been observed. The electrical resistivity showed the semiconducting nature with room temperature electrical resistivity decreased from 10−2 to 10−3 Ω cm after annealing. The decrease in the band gap energy from 3.3 to 2.7 eV was observed after the annealing.  相似文献   

19.
The influence of annealing in the presence of CdCl2 and a thin copper layer deposited onto CdTe on the photoluminescence spectra of CdTe, as a component of CdS/CdTe heterojunction, has been studied for two excitation wavelengths: 0.337 μm and 0.6328 μm. The behavior of the PL was studied as a function of the measurement temperature and excitation intensity. At 0.6328 μm excitation, the interface PL consists of a known 1.43X band, and the chloride annealing enhances radiative transitions at 1.536 eV. The intensity of the 1.536 eV transitions increases when Cu is present. The PL of as-deposited CdTe films prepared in the presence of oxygen has the 1.45X band attenuated when excited with 0.337 μm excitation wavelength.  相似文献   

20.
Cubic cadmium sulphide (CdS) thin films with (111) preferential orientation were prepared by chemical bath deposition (CBD) technique, using the reaction between NH4OH, CdSO4 and CS(NH2)2. The films properties have been investigated as a function of bath temperature and deposition time. Structural properties of the obtained films were studied by X-ray diffraction analysis. The structural parameters such as crystallite size have been evaluated. The transmission spectra, recorded in the UV visible range reveal a relatively high transmission coefficient (70%) in the obtained films. The transmittance data analysis indicates that the optical band gap is closely related to the deposition conditions, a direct band gap ranging from 2.0 eV to 2.34 eV was deduced. The electrical characterization shows that CdS films' dark conductivities can be controlled either by the deposition time or the bath temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号