首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
利用测井资料计算碳酸盐岩三个地层压力   总被引:7,自引:1,他引:6  
针对碳酸盐岩的三个地层压力预测相对较难问题,充分考虑到碳酸盐岩剖面的地层特性,提出了一套利用测井资料计算碳酸盐岩三个地层压力的方法,并讨论了模型中各个参数的测井求取方法。将该整套方法应用到川东地区LJZ构造LJ9井等多口井的测井资料精细解释处理中,计算出该井不同井深与不同层位的地层压力,并与实测地层压力对比,结果表明,该套方法从测井信息中提取碳酸盐岩地层压力是可靠的,且精度较高、实用性强,其结果能够用于碳酸盐岩地层三个地层压力剖面的建立和钻井液密度的设计。  相似文献   

2.
基于有效应力法的碳酸盐岩地层孔隙压力测井计算   总被引:6,自引:0,他引:6  
利用测井资料预测地层压力是一条比较有效的途径。目前,砂泥岩剖面地层压力的预测技术比较成熟,而碳酸盐岩剖面的地层压力预测仍存在一定问题。针对碳酸盐岩地层孔隙压力预测相对较难这一问题,基于碳酸盐岩地层沉积压实机理,提出了利用有效应力法预测地层压力的方法,并重点讨论了模型中的横波时差和岩石泊松比的测井求取方法。利用该法对川东地区LJZ构造LJ5井等井的碳酸盐岩井段的测井资料进行了地层压力预测处理,获得了比较满意的效果。应用表明,该法从测井信息中提取的碳酸盐岩地层压力是可靠的,精度高、实用性强,且避免了在碳酸盐岩剖面中采用等效深度法预测地层压力时需要寻找纯泥岩层来构建正常压实趋势方程的难题。其结果可以用于碳酸盐岩井段三个地层压力剖面的建立和钻井液密度的设计。  相似文献   

3.
准确预测地层自然破裂压力是防止井壁失稳、实现科学钻井的必要条件。本文针对碳酸盐岩地层破裂压力预测相对较难这一问题,提出了一种利用视上覆岩层压力来估算地层自然破裂压力的新方法,重点讨论了在碳酸盐岩剖面中如何构建视上覆岩层压力模型,以及利用漏失测试资料和密度测井曲线确定模型参数的问题。利用所构建的地层自然破裂压力方程对川东6口井的飞仙关组碳酸盐岩剖面裂缝-孔隙型储层的地层自然破裂压力进行了预测,结果表明该法对碳酸盐岩地层自然破裂压力预测精度较高,效果良好,具有一定的实用性。  相似文献   

4.
针对火山岩地层孔隙压力预测相对较难,充分考虑到火山岩剖面的地层特性,在岩石力学参数室内测试分析的基础上提出了利用有效应力法预测地层压力的方法;讨论了模型中利用岩石泊松比室内测试数据刻度测井资料计算的泊松比计算岩石有效应力,进而预测地层孔隙压力.建立的整套方法模型对准噶尔盆地×1井等井的火山岩井段进行了地层压力测井预测处理,给出了合理的地层压力剖面与泥浆密度,计算出不同井深与不同层位的地层压力.基于火山岩岩性复杂,不同岩性的泊松比变化较大,应分岩性建立地层孔隙压力预测模型,对具体模型进行检验修正,以逐步解决火山岩地层孔隙压力预测的难题.与实测地层压力对比表明,该方法从测井信息中提取火山岩地层压力是可靠的,且精度较高、实用性较强,能够用于火山岩地层地层压力剖面的建立和钻井液密度的设计.  相似文献   

5.
目前计算地层破裂压力的理论模型或公式较多,但缺乏能直观反映地层破裂压力随测井计算的岩石力学参数变化的统计模型。该文基于地层破裂压力与岩石力学参数的关系,优选出对地层破裂压力影响较大的杨氏模量、体积弹性模量、泊松比及深度等四个参数作为建立统计模型的输入变量。同时利用BP神经网络和多元回归分析法对碳酸盐岩地层实测破裂压力数据进行统计建模和预测研究。结果表明,多元回归模型形式简单直观,易于使用,但精度不高;而BP神经网络模型复杂,建模较难,但预测的地层破裂压力误差小,精度高。两种统计模型都不失为预测地层破裂压力的可行方法。  相似文献   

6.
在碳酸盐岩地层中,裂缝和溶洞较发育,若按照地层破裂压力确定钻井液安全密度窗口,极易引起井漏事故.根据漏失发生的不同机理,将漏失压力分为破裂漏失压力和自然漏失压力,并建立了这2种漏失压力的计算模型,据此预测了哈拉哈塘凹陷哈斜1井的漏失压力.利用破裂漏失压力计算模型,预测了哈斜1井新近系、白垩系和二叠系井段的破裂漏失压力,最大误差为3.15%,能够满足钻井工程需要,可将其应用到哈拉哈塘凹陷开发井设计、施工中.利用自然漏失压力计算模型,预测了哈斜1井奥陶系漏失压力,结果与现场实际情况一致,说明该预测模型准确,在哈拉哈塘凹陷开发井设计中,可根据该模型预测奥陶系的自然漏失压力.  相似文献   

7.
井壁稳定性实时预测方法   总被引:8,自引:4,他引:4  
为有效解决钻井过程中的井壁失稳问题,根据地震和测井信息之问的密切联系,建立了基于地震属性的实时井壁稳定性预测模型.该模型综合利用地震、测井和地质资料,从待钻目标井和已完钻邻井的井旁地震记录中分别提取最优地震属性组合,运用小波神经网络建立已钻井地震属性与测井数据之间的分层映射关系模型,利用当前待钻地层的地震属性并选取相应的映射模型实时预测钻头以下地层的声波和密度测井曲线.基于预测结果结合井壁稳定力学模型计算待钻层段的孔隙压力、坍塌压力和破裂压力,进而预测安全钻井液密度范围.塔里木油田的实际应用表明,该预测模型具有良好的实时操作性能,测井曲线、地应力、孔隙压力、破裂压力和安全钻井液密度范围的预测精度均较高.图5表1参21  相似文献   

8.
针对安棚油田的地质特征,对地应力计算经验模型进行了优选,根据选出的地应力计算模型的理论基础和井壁岩石的破裂机理,确定出了适合安棚油田的地层破裂压力和坍塌压力的计算模型。采用测井资料计算了模型中的各种中间参数,实现了对地应力、地层破裂压力以及坍塌压力的连续计算。在此基础上,综合使用地层压力、地层破裂压力以及坍塌压力等因素确定出了安全钻井液密度范围。利用该方法对安棚油田b252和an2051井的资料进行了处理。结果表明,利用测井资料计算得到的地应力值和安全钻井液密度范围是准确的,能满足现场钻井施工的需要。  相似文献   

9.
目前计算地层破裂压力的理论模型或公式虽较多,但缺乏能直观反映地层破裂压力随测井岩石力学参数变化的统计模型。基于地层破裂压力与岩石力学参数的关系,优选出了对地层破裂压力影响较大的杨氏模量、体积弹性模量、泊松比和深度等4个参数作为建立统计模型的输入变量。同时利用BP神经网络和多元回归分析法对碳酸盐岩地层实测破裂压力数据进行统计建模和预测研究。多元回归模型形式简单直观,易于使用,但精度不高;而BP神经网络模型复杂,建模较难,但预测的地层破裂压力误差小,精度高。两种统计模型都不失为预测地层破裂压力的可行方法。  相似文献   

10.
地层破裂压力测井解释技术在LG地区的应用   总被引:1,自引:0,他引:1  
确定地层破裂压力和水力压裂裂缝延伸几何形态,对于设计合理的压裂方案、提供合理的压裂施工压力、避免压裂裂缝高度过高导致地层间的层间窜漏、更好地达到改善储层的目的至关重要。针对LG地区碳酸盐岩气藏特点,介绍了用测井资料预测地层破裂压力和裂缝高度的基本原理和方法,并选择LG地区5〖JP2〗口井的测井资料进行了地层破裂压力和裂缝高度预测处理。结果表明:LG地区地层破裂压力测井计算方法和裂缝高度预测方法合理,为LG地区碳酸盐岩储层改造提供的施工参数较为可靠;在LG地区某井长兴组综合运用地层破裂压力和裂缝高度预测结果优选了试油层位,获得了日产百万立方米的高产天然气,取得了较大的经济效益和较好的应用效果。  相似文献   

11.
��CYT��Ԥ��ز�����ѹ��   总被引:2,自引:1,他引:1  
地层破裂压力是钻井工程设计的重要基础数据〔1~2〕,对于开发性地层,利用测井资料或液压实验即可求得,但对于勘探性地层,它则是一个复杂性问题。由于现有预测模型的参数求取多采用地震层速度法,尽管这种方法简单可行,也得到广泛使用,但它的预测精度不高,往往只能作为钻井工程设计的参考。文章基于井眼受力状态分析,给出了一种预测地层破裂压力的力学模型,它涵盖了泊松比、构造应力、多孔介质弹性系数、上覆岩层压力、孔隙压力和岩石拉伸强度等影响因素。鉴于勘探性岩层求参数的固有难度,介绍了一种预测地层破裂压力的求参数新方法,即用空间源直接探矿仪(简称CYT)岩性探测资料求取法——CYT 法。验证实例表明,该方法获得的地层破裂压力预测精度高。  相似文献   

12.
碳酸盐岩超压岩石物理模拟实验及超压预测理论模型   总被引:2,自引:0,他引:2  
碳酸盐岩地层超压预测目前仍然是超压研究的难点问题,常用的碎屑岩地层超压预测方法是建立在Terzaghi有效应力理论基础上的、经验性的、且需要有明确响应超压的测井和地震参数(主要是纵波速度)。这些经验性的方法不适用于岩性致密且物性极不均一的碳酸盐岩地层的超压预测。通过碳酸盐岩样品超压岩石物理模拟实验剖析岩石弹性性质与孔隙流体压力和有效应力的关系,基于含流体岩石多孔介质弹性理论和广义胡克定律,从分析碳酸盐岩地层应力-应变-孔隙压力本构关系着手,建立表征孔隙压力与岩石弹性参数定量关系的超压预测理论模型(超压预测量化模型)。利用实测碳酸盐岩样品矿物组分含量并结合Voigt-Reuss-Hill模型计算岩石基质弹性模量,利用Wood模型和Patchy模型计算孔隙流体弹性模量,然后再利用碳酸盐岩样品岩石物理模拟实验得到的实际有效应力与岩石骨架弹性模量相关关系,根据Biot有效应力定律,计算得到岩石样品的等效骨架弹性模量。利用上述获得的碳酸盐岩样品各弹性参数,通过超压预测量化模型计算碳酸盐岩超压,并与碳酸盐岩样品岩石物理模拟实验加载的孔隙流体压力进行对比,验证了超压预测量化模型的合理性,提出了基于实测资料的模型校正方法。该超压预测理论模型所需的岩石弹性参数也可通过研究测井和地震资料计算获得,并可利用地震资料实现碳酸盐岩地层的超压钻前预测。  相似文献   

13.
碳酸盐岩是深层、超深层的重点勘探领域,其孔隙压力预监测是制约井控安全的关键因素,但由于成岩作用复杂,灰岩与白云岩的特性差异较大,导致碳酸盐岩孔隙压力预监测成为世界级难题。为了指明解决该难题的科学方向,通过系统分析碳酸盐岩的特性、孔隙压力成因机制及相应的4类预监测方法,进一步提出:①碳酸盐岩的成分和结构是物性、流体成分及其含量的主控因素,进而影响到其化学、声学、力学等特性;②深层、超深层碳酸盐岩的孔隙度不再随深度增加而减小,这表明不存在压实作用,相关的理论与方法不适用于相应碳酸盐岩地层;③碳酸盐岩的孔隙压力成因机制与演化历程复杂,多源增压机制与降压机制并存,孔隙压力计算模型应避免响应特征多解性导致的偏差;④室内岩心实验脱离了原位埋深与温度及压力场环境,在此基础上建立的孔隙压力计算模型考虑因素不全面、适用性不强。因此,异常高压预监测模型的建立需要综合考虑地层埋深、成因响应、温度-压力场环境、岩石成分及孔隙结构等因素。  相似文献   

14.
15.
以Linux Qt为开发环境,利用测井和岩心资料开发了岩石物理分析软件包.该软件包由3个模块组成,岩心测试数据交互分析模块、测井曲线标定模块及岩石物理参数分析和预测模块.该软件充分利用近年来有效的岩石物理模型和理论,针对不同流体成份、饱和度、孔隙度、温度压力等性质的油气藏,预测其测井和地震响应,指导油气层测井、地震响应特征研究和储层预测.通过实际井资料的处理,效果良好.该软件具有灵活方便的图形界面和交互功能.  相似文献   

16.
碳酸盐岩地层孔隙压力预测方法研究   总被引:5,自引:0,他引:5  
准确预测地层孔隙压力是防止井壁失稳、实现科学钻井的必要条件。针对碳酸盐岩地层孔隙压力预测相对较难这一问题,从等效深度法计算地层孔隙压力的关键技术入手,重点讨论了在碳酸盐岩剖面中利用视泥岩地层的测井数据构建正常压实趋势线的问题,给出了如何对此正常压实趋势线进行修正并得到研究区域的正常压实趋势线的方法。利用所构建的正常压实趋势方程对川东飞仙关组多口井的碳酸盐岩剖面裂缝-孔隙型储层的地层孔隙压力进行测井预测的结果表明,该方法对于预测碳酸盐岩剖面地层孔隙压力同样具有一定的实用性,而且预测精度较高,效果良好。  相似文献   

17.
碳酸盐岩储层酸处理降低破裂压力研究综述   总被引:1,自引:0,他引:1  
我国具有丰富的低渗透油气资源,压裂酸化改造是提高低渗透油气藏开采效果的重要手段,而地层破裂是储层压裂酸化改造成功的关键。在低渗透储层的改造过程中,由于储层段埋藏深、构造应力异常、泥质含量高等原因,某些井地层破裂压力异常高,导致了施工失败。本文以碳酸盐岩储层为研究对象,通过对碳酸盐岩岩石力学强度的本质分析,综述了岩石的矿物组成、结构特征、构造、水或者化学溶液作用以及缺陷对碳酸盐岩岩石力学性质的影响。为酸处理降低岩石力学强度,从而降低地层破裂压力提供了重要理论依据。  相似文献   

18.
碳酸盐岩地层具有非均质性强、孔洞与裂缝发育和岩石骨架刚度较强的特点,以正常压实理论为基础建立的地层孔隙压力求取方法不适用于碳酸盐岩地层,为此,进行了碳酸盐岩地层孔隙压力求取方法的研究。碳酸盐岩岩样声速试验和理论分析发现,不同孔隙压力下的碳酸盐岩纵波速度变化主要是由孔隙流体纵波速度变化引起的。利用小波变换法提取和放大孔隙流体纵波速度小幅波动对岩石纵波速度的影响关系,确定碳酸盐岩地层的异常压力层,并与实测地层孔隙压力数据相结合,建立了碳酸盐岩地层孔隙压力预测模型,形成了基于流体声速的碳酸盐岩地层孔隙压力预测方法。应用实例表明,基于流体声速的碳酸盐岩地层孔隙压力预测方法可以预测碳酸盐岩地层的孔隙压力,误差小于15%,满足工程要求,为碳酸盐岩地层孔隙压力预测提供了一种新方法。   相似文献   

19.
文章在四川成都洛带地区,根据对地应力分布规律和影响它的诸多因素的分析,引用前人的研究成果,充分利用测井信息,建立了地应力计算的半经验公式模型,利用测井资料确定了模式中的各参数,不仅可以方便迅速得到沿深度连续分布的地应力剖面,而且节约了昂贵的地应力测试费用,具有明显的经济意义和实用价值。根据测井计算的体积模量、泊松比、岩石强度的抗剪、抗压参数以及岩石的破裂压力和地层的孔隙压力等资料,并结合其它资料可对储层进行优选,同时可以分析其改造的难易程度,对压裂方案的设计有一定的参考价值。研究储层在平面上的展布特征是气田进一步开发的前提,而应力分布特征与油气有利聚集区紧密相关,一般来说,油气总是从高应力区向低应力区运移。因此,地层弹性及应力场分析对油气有利带分析和井位部署同样具有重要意义。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号