首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the chronic constriction injury (CCI) model, signs and symptoms similar to those observed in reflex sympathetic dystrophy (RSD) can be induced by loosely ligating a rat sciatic nerve. Skin microcirculatory (inflammation-like) disorders may result from release of vasoactive neuropeptides at peripheral endings of antidromically acting nociceptive nerve fibers. These antidromic mechanisms may account for vasodilation and polymorphonuclear leukocyte (PMN) accumulation in the ligated hindpaw. We assessed skin blood flow (SBF) on the ligated side, by means of laser Doppler flowmetry, before as well as at day 4 after ligation. Postligation SBF measurements were performed before and after selective (capsaicin) conduction blockade of the ligated sciatic nerve. The extent of PMN accumulation was determined by measuring myeloperoxidase (MPO) activity in muscle biopsies obtained from the ligated and contralateral nonligated side. As compared to preligation SBF values, we observed an increase at day 4. SBF returned to preligation values consequent to capsaicin application. MPO activity, when compared to the nonligated side, was higher in biopsies obtained from the ligated side. These findings indicate that in the CCI-model, antidromically acting C-nociceptor nerve fibres increase SBF at 4 days after ligation. In addition, these antidromic mechanisms may induce an inflammatory response in the ipsilateral hindpaw, mediated by release of neuropeptides from the peripheral endings of antidromically acting C-nociceptor nerve fibers. This inflammatory response may account for various signs and symptoms as observed in the CCI model and may mirror pathophysiological mechanisms of RSD.  相似文献   

2.
The mechanism by which cotransport proteins couple their substrates across cell membranes is not known. A commonly proposed model is that cotransport results from ligand-induced conformational transitions that change the accessibility of ligand-binding sites from one side of the membrane to the other. To test this model, we have measured the accessibility of covalent probes to a cysteine residue (Q457C) placed in the putative sugar-translocation domain of the Na+/glucose cotransporter (SGLT1). The mutant protein Q457C was able to transport sugar, but transport was abolished after alkylation by methanethiosulfonate reagents. Alkylation blocked sugar translocation but not sugar binding. Accessibility of Q457C to alkylating reagents required external Na+ and was blocked by external sugar and phlorizin. The voltage dependence of accessibility was directly correlated with the presteady-state charge movement of SGLT1. Voltage-jump experiments with rhodamine-6-maleimide-labeled Q457C showed that the time course and level of changes in fluorescence closely followed the presteady-state charge movement. We conclude that conformational changes are responsible for the coupling of Na+ and sugar transport and that Q457 plays a critical role in sugar translocation by SGLT1.  相似文献   

3.
Pharmacological modulation of human sodium current was examined in Xenopus oocytes expressing human heart Na+ channels. Na+ currents activated near -50 mV with maximum current amplitudes observed at -20 mV. Steady-state inactivation was characterized by a V1/2 value of -57 +/- 0.5 mV and a slope factor (k) of 7.3 +/- 0.3 mV. Sodium currents were blocked by tetrodotoxin with an IC50 value of 1.8 microM. These properties are consistent with those of Na+ channels expressed in mammalian myocardial cells. We have investigated the effects of several pharmacological agents which, with the exception of lidocaine, have not been characterized against cRNA-derived Na+ channels expressed in Xenopus oocytes. Lidocaine, quinidine and flecainide blocked resting Na+ channels with IC50 values of 521 microM, 198 microM, and 41 microM, respectively. Use-dependent block was also observed for all three agents, but concentrations necessary to induce block were higher than expected for quinidine and flecainide. This may reflect differences arising due to expression in the Xenopus oocyte system or could be a true difference in the interaction between human cardiac Na+ channels and these drugs compared to other mammalian Na+ channels. Importantly, however, this result would not have been predicted based upon previous studies of mammalian cardiac Na+ channels. The effects of DPI 201-106, RWJ 24517, and BDF 9148 were also tested and all three agents slowed and/or removed Na+ current inactivation, reduced peak current amplitudes, and induced use-dependent block. These data suggest that the alpha-subunit is the site of interaction between cardiac Na+ channels and Class I antiarrhythmic drugs as well as inactivation modifiers such as DPI 201-106.  相似文献   

4.
Na+ currents in adult rat large dorsal root ganglion neurons were recorded during long duration voltage-clamp steps by patch clamping whole cells and outside-out membrane patches. Na+ current present >60 ms after the onset of a depolarizing pulse (late Na+ current) underwent partial inactivation; it behaved as the sum of three kinetically distinct components, each of which was blocked by nanomolar concentrations of tetrodotoxin. Inactivation of one component (late-1) of the whole cell current reached equilibrium during the first 60 ms; repolarizing to -40 or -50 mV from potentials of -30 mV or more positive gave rise to a characteristic increase in current (tau >/= 5 ms), attributed to removal of inactivation. A second component (late-2) underwent slower inactivation (tau > 80 ms) at potentials more positive than -80 mV, and steady-state inactivation appeared complete at -30 mV. In small membrane patches, bursts of brief openings (gamma = 13-18 pS) were usually recorded. The distribution of burst durations indicated that two populations of channel were present with inactivation rates corresponding to late-1 and late-2 macroscopic currents. The persistent Na+ current in the whole cell that extended to potentials more positive than -30 mV appeared to correspond to sporadic, brief openings that were recorded in patches (mean open time approximately 0.1 ms) over a wide potential range. None of the three types of gating described corresponded to activation/inactivation gating overlap of fast transient currents.  相似文献   

5.
PURPOSE: The incidence and consequences of pregnancy during therapy for childhood acute lymphoblastic leukemia (ALL) are largely unknown. To explore the issues involved in this complication of ALL treatment, two recent cases are presented. PATIENTS: Two 15-year-old girls with "high risk" ALL became pregnant while receiving maintenance therapy. RESULTS: In one case, the patient experienced a spontaneous abortion at approximately 5 to 6 weeks gestation. The patient completed maintenance therapy and is in remission 8 months after the end of treatment. The second patient, known to be non-compliant during therapy, was found to be 5 months pregnant at the end of maintenance therapy. She developed HELLP syndrome (hemolysis, elevated liver enzymes, and low platelet count), was induced at approximately 34 weeks, and delivered an apparently normal baby girl. Both the patient and her baby continue to do well 10 months after delivery. CONCLUSIONS: A variety of factors may influence the incidence of pregnancy during ALL therapy. Gonadal function, which is likely to return to normal during maintenance therapy, may also be affected by alterations in the dose intensity of treatment. Social factors may also alter the incidence of pregnancy. Adverse effects on the fetus are more likely to occur in the first trimester, depending on the drug or drugs used. Although all chemotherapies may have mutagenic and teratogenic effects, they do not invariably cause abnormalities. Survival of adolescents who become pregnant during treatment does not appear to be adversely affected when therapy is not modified or discontinued.  相似文献   

6.
INTRODUCTION: Steady-state Na/K pump current (Ip) in adult guinea pig ventricular myocytes was studied to determine the effect on the Na/K pump of transmembrane Na leak, membrane potential, and pipette Na concentration. METHODS AND RESULTS: Using conventional whole cell, patch clamp techniques, Ip was identified as either Ko-sensitive or ouabain-sensitive current when most other membrane currents were inhibited. Control experiments showed that there were no Ko-sensitive currents other than Ip under the conditions of our experiments. Ip was found to be similar to that reported by others being voltage dependent between -130 and 0 mV and having a half maximal activation by Nai of 28 mM. Ouabain sensitivity was also measured, and it was found that there were two binding sites with the high affinity site comprising 5% to 10% of the total and having an apparent affinity 1000-fold higher than the low affinity site. Apparent affinity of both sites was shifted about 10-fold (higher affinity) by increasing Nai from 10 to 85 mM. When internally perfused with 0 Na solution, Na leak through the membrane was found to be linearly related to Na/K pump activity. In contrast to prior suggestions, Ip was not correlated with series resistance when there was a large transmembrane Na gradient. CONCLUSION: These data suggest that, under conditions of high transmembrane Na gradient, Na leak through the membrane plays a significant role in determining Na/K pump activity.  相似文献   

7.
The tetrodotoxin-sensitive sodium ion (Na+) channel is opened by cellular depolarization and favors the passage of Na+ over other ions. Activation of the beta-adrenergic receptor or protein kinase A in rat heart cells transformed this Na+ channel into one that is promiscuous with respect to ion selectivity, permitting calcium ions (Ca2+) to permeate as readily as Na+. Similarly, nanomolar concentrations of cardiotonic steroids such as ouabain and digoxin switched the ion selectivity of the Na+ channel to this state of promiscuous permeability called slip-mode conductance. Slip-mode conductance of the Na+ channel can contribute significantly to local and global cardiac Ca2+ signaling and may be a general signaling mechanism in excitable cells.  相似文献   

8.
1. The benzoylguanidine derivative Hoe 694 ((3-methylsulphonyl-4- piperidino-benzoyl) guanidine methanesulphonate) was characterized as an inhibitor of Na+/H+ exchange in rabbit erythrocytes, rat platelets and bovine endothelial cells. The potency of the compound was slightly lower or comparable to ethylisopropyl amiloride (EIPA). 2. To investigate a possible cardioprotective role of the Na+/H+ exchange inhibitor Hoe 694, rat isolated working hearts were subjected to ischaemia and reperfusion. In these experiments all untreated hearts suffered ventricular fibrillation on reperfusion. Addition of 10(-7) M Hoe 694 to the perfusate almost abolished reperfusion arrhythmias in the rat isolated working hearts. 3. Hoe 694 reduced the release of lactate dehydrogenase (LDH) and creatine kinase (CK), which are indicators of cellular damage during ischaemia, into the venous effluent of the hearts by 60% and 54%, respectively. 4. The tissue content of glycogen at the end of the experiments was increased by 60% and the high energy phosphates ATP and creatine phosphate were increased by 240% and 270% respectively in the treated hearts as compared to control hearts. 5. Antiischaemic effects of the Na+/H+ exchange inhibitor, Hoe 694, were investigated in a second experiment in anaesthetized rats undergoing coronary artery ligation. In these animals, pretreatment with Hoe 694 caused a dose-dependent reduction of ventricular premature beats and ventricular tachycardia as well as a complete suppression of ventricular fibrillation down to doses of 0.1 mg kg-1, i.v. Blood pressure and heart rate remained unchanged. 6. We conclude that the new Na+/H+ exchange inhibitor, Hoe 694, shows cardioprotective and antiarrhythmic effects in ischaemia and reperfusion in rat isolated hearts and in anaesthetized rats. In view of the role which Na+/H+ exchange seems to play in the pathophysiology of cardiac ischaemia these effects could probably be attributed to Na+/H+ exchange inhibition.  相似文献   

9.
The current topological model of the Na+-Ca2+ exchanger consists of 11 transmembrane segments with extracellular loops a, c, e, g, i, and k and cytoplasmic loops b, d, f, h, and j. Cytoplasmic loop f, which plays a role in regulating the exchanger, is large and separates the first five from the last six transmembrane segments. We have tested this topological model by mutating residues near putative transmembrane segments to cysteine and then examining the effects of intracellular and extracellular applications of sulfhydryl-modifying reagents on exchanger activity. To aid in our topological studies, we also constructed a cysteineless Na+-Ca2+ exchanger. This mutant is fully functional in Na+ gradient-dependent 45Ca2+ uptake measurements and displays wild-type regulatory properties. It is concluded that the 15 endogenous cysteine residues are not essential for either activity or regulation of the exchanger. Our data support the current model by placing loops c and e at the extracellular surface and loops d, j, and l at the intracellular surface. However, the data also support placing Ser-788 of loop h at the extracellular surface and Gly-837 of loop i at the intracellular surface. To account for these data, we propose a revision of the model that places transmembrane segment 6 in cytoplasmic loop f. Additionally, we propose that putative transmembrane segment 9 does not span the membrane, but may form a "P-loop"-like structure.  相似文献   

10.
Repeated oesophageal acidification is a definitive feature of gastro-oesophageal reflux disease, which in turn is caused by relaxation of the lower oesophageal sphincter (LOS). This study in anaesthetised ferrets investigates the reflex pathways involved in effects of oesophageal acidification on motor function of the LOS, with particular focus on the role of tachykinins. LOS pressure was monitored with a perfused micromanometric sleeve assembly. Oesophageal acidification reduced LOS pressure by 48 +/- 5% until washout with saline. This reduction became larger with repeated tests, and was unaffected in amplitude by acute bilateral vagotomy, although the response became slower in onset. Intra-oesophageal capsaicin (0.5% solution) caused a 68 +/- 17% decrease in LOS pressure which remained unchanged with repeated tests. The NK-1 receptor antagonist CP96,345 (1-5 mg/kg intravenous (i.v.) blocked the post-vagotomy LOS responses to both intra-luminal acid and capsaicin. Close intra-arterial (i.a.) injections of capsaicin (1-100 micrograms) gut induced LOS relaxation which was neither vagally nor NK-1 receptor-mediated. Substance P or the selective NK-1 receptor agonist [Sar9, Met(O2)11] substance P (25-500 ng close i.a.) caused a biphasic LOS response, consisting of initial brief contraction followed by prolonged, dose-dependent relaxation. Tetrodotoxin (10 micrograms/kg close i.a.) changed the biphasic response to substance P to excitation only. The neurokinin-1 (NK-1) receptor antagonist CP96,345 (0.3-10 mg/kg i.v.) dose-dependently reduced the inhibitory response to substance P. The excitatory phase of the response to substance P was larger and prolonged after guanethidine (5 mg/kg, i.v.), or propranolol (1 mg/kg, i.v.). L-NAME (100 mg/kg i.v.) reduced the inhibitory phase. The selective NK-2 receptor agonist [beta-Ala8] neurokinin A(4-10) caused LOS excitation only. These data indicate that intra-oesophageal acid causes substance P release from extrinsic afferent nerve endings which activates local inhibitory pathways to the LOS via NK-1 receptors.  相似文献   

11.
It is suggested that working memory comprises a system for the temporary storage and manipulation of information, forming an important link between perception and controlled action. Evidence is presented for a three-component model, comprising an attentional control system, the central executive, and two subsidiary slave systems. One of these the, the visuo-spatial sketch pad holds and manipulates spatial information, while the other, the phonological loop performs a similar function for auditory and speech-based information. Evidence is presented for the view that the phonological loop has evolved as a mechanism to facilitate the acquisition of language.  相似文献   

12.
Muscarinic modulation of persistent Na+ current (INaP) was studied using whole cell recordings from acutely isolated pyramidal cells of rat neocortex. After suppression of Ca2+ and K+ currents, INaP was evoked by slow depolarizing voltage ramps or by long depolarizing voltage steps. The cholinergic agonist, carbachol, produced an atropine-sensitive decrease of INaP at all potentials. When applied at a saturating concentration (20 microM), carbachol reduced peak INaP by 38% on average. Carbachol did not alter the voltage dependence of INaP activation nor did it interfere with the slow inactivation of INaP. Our data indicate that INaP can be targeted by the rich cholinergic innervation of the neocortex. Because INaP is activated in the subthreshold voltage range, cholinergic inhibition of this current would be particularly suited to modulate the electrical behavior of neocortical pyramidal cells below and near firing threshold.  相似文献   

13.
BACKGROUND: The development of functional diversity through gene duplication and subsequent divergent evolution can give rise to proteins that have little or no sequence similarity, but retain similar topologies. RESULTS: The crystal structures of nerve growth factor, transforming growth factor-beta 2 and platelet-derived growth factor-BB show that all three are based on a cystine-knot plus beta-strands topology. There is very little sequence identity between the three proteins and the relationship between the structures had not been deduced from sequence comparisons. Each growth factor is usually active as a dimer; each exists as a dimer in the crystal, but the relative orientations of the protomers are different in each case. CONCLUSION: The structural motif of disulphide bonds and hydrogen-bonded beta-strands unexpectedly found in these three growth factors acts as a stable framework for elaboration of loops of low sequence similarity that contain the specificity for receptor interaction.  相似文献   

14.
In small cell-attached patches containing one and only one Na+ channel, inactivation was studied in three different gating modes, namely, the fast-inactivating F mode and the more slowly inactivating S mode and P mode with similar inactivation kinetics. In each of these modes, ensemble-averaged currents could be fitted with a Hodgkin-Huxley-type model with a single exponential for inactivation (tauh). tauh declined from 1.0 ms at -60 mV to 0.1 ms at 0 mV in the F mode, from 4.6 ms at -40 mV to 1.1 ms at 0 mV in the S mode, and from 4.5 ms at -40 mV to 0.8 ms at +20 mV in the P mode, respectively. The probability of non-empty traces (net), the mean number of openings per non-empty trace (op/tr), and the mean open probability per trace (popen) were evaluated at 4-ms test pulses. net inclined from 30% at -60 mV to 63% at 0 mV in the F mode, from 4% at -90 mV to 90% at 0 mV in the S mode, and from 2% at -60 mV to 79% at +20 mV in the P mode. op/tr declined from 1.4 at -60 mV to 1.1 at 0 mV in the F mode, from 4.0 at -60 mV to 1.2 at 0 mV in the S mode, and from 2.9 at -40 mV to 1.6 at +20 mV in the P mode. popen was bell-shaped with a maximum of 5% at -30 mV in the F mode, 48% at -50 mV in the S mode, and 16% at 0 mV in the P mode. It is concluded that 1) a switch between F and S modes may reflect a functional change of inactivation, 2) a switch between S and P modes may reflect a functional change of activation, 3) tauh is mainly determined by the latency until the first channel opening in the F mode and by the number of reopenings in the S and P modes, 4) at least in the S and P modes, inactivation is independent of pore opening, and 5) in the S mode, mainly open channels inactivate, and in the P mode, mainly closed channels inactivate.  相似文献   

15.
1. The effects of No. 7943 on the Na+/Ca2+ exchange current and on other membrane currents were investigated in single cardiac ventricular cells of guinea-pig with the whole-cell voltage-clamp technique. 2. No. 7943 at 0.1-10 microM suppressed the outward Na+/Ca2+ exchange current in a concentration-dependent manner. The suppression was reversible and the IC50 value was approximately 0.32 microM. 3. No. 7943 at 5-50 microM suppressed also the inward Na+/Ca2+ exchange current in a concentration-dependent manner but with a higher IC50 value of approximately 17 microM. 4. In a concentration-response curve, No. 7943 raised the K(m)Ca2+ value, but did not affect the Imax value, indicating that No. 7943 is a competitive antagonist with external Ca2+ for the outward Na+/ Ca2+ exchange current. 5. The voltage-gated Na+ current, Ca2+ current and the inward rectifier K+ current were also inhibited by No. 7943 with IC50S of approximately 14, 8 and 7 microM, respectively. 6. In contrast to No. 7943, 3', 4'-dichlorobenzamil (DCB) at 3-30 microM suppressed the inward Na+/Ca2+ exchange current with IC50 of 17 microM, but did not affect the outward exchange current at these concentrations. 7. We conclude that No. 7943 inhibits the outward Na+/Ca2+ exchange current more potently than any other currents as a competitive inhibitor with external Ca2+. This effect is in contrast to DCB which preferentially inhibits the inward rather than the outward Na+/Ca2+ exchange current.  相似文献   

16.
The effect of membrane potential on the Na+-Ca2+ exchange activity of isolated sarcolemmal vesicles from dog ventricles is examined. Na+-Ca2+ exchange is monitored as Nai+-dependent Ca2+ uptake as described by Reeves and Sutko ((1979) Proc. Natl. Acad. Sci. U. S. A. 76,590-594). Membrane potential is controlled by varying internal and external K+ in the presence of valinomycin. Inside-positive potentials stimulate Nai+-dependent Ca2+ influx. This stimulation is independent of Ca2+ concentration. The results indicate that Na+-Ca2+ exchange by itself can generate a substantial potential (approximately -60mV) in the sarcolemmal vesicles. The data are consistent with an electrogenic Na+-Ca2+ exchange mechanism in which three or more Na+ are exchanged for one Ca2+. This electrogenic exchange may have important implications in the control of myocardial tension development.  相似文献   

17.
The effect of valproate (VPA) on Na+ currents (INa), was studied by means of voltage clamp recordings using whole-cell patch clamp configuration in 21 acutely dissociated neocortical neurons. Concentrations of VPA up to 200 microM failed to induce any detectable decrease in fast INa (I(Naf)), but the persistent fraction (I(NaP)) was significantly reduced by low VPA concentrations (10-30 microM), corresponding to the lower values of the 'therapeutic' range in epileptic patients. Since it is known that I(NaP) critically regulates the firing properties of pyramidal neurons, it is suggested that the anticonvulsant effectiveness of VPA is mainly due to its effect on I(NaP).  相似文献   

18.
We examined the effect of the anticonvulsant phenytoin (PT) (20-200 microM) on the persistent Na+ current (INaP), INaP-dependent membrane potential responses and repetitive firing in layer 5 pyramidal neurons in a slice preparation of rat sensorimotor cortex. INaP measured directly with voltage-clamp was reduced in a concentration-dependent manner with an apparent EC50 value of 78 microM. Clear effects on current-evoked membrane potential responses were apparent at 50 microM PT: Subthreshold, depolarizing membrane potential rectification was reduced, rheobase current was increased and the relation between firing rate and injected current was shifted to the right, but action potential amplitude and duration were unaffected. We ascribed these effects of PT largely to the reduction of INaP. A slow decline of firing rate during the injected current pulse also became apparent at moderate PT concentrations. When PT concentration was raised to 150 to 200 microM, this slow adaption was enhanced markedly, and firing ceased during a sufficiently large current pulse. This enhanced slow adaptation and the cessation of firing were associated with a marked decline of spike amplitude and a rise in spike firing level during successive interspike intervals. We ascribe these effects largely to the action of PT on the transient Na+ current. We conclude that the reduction in cortical neuronal excitability by PT depends partly on its reduction of INaP, the effects of INaP blockade are apparent at PT concentrations lower than those required to abolish tonic firing and the cells need not be excessively depolarized for PT to decrease excitability by its effect on INaP.  相似文献   

19.
Studies have shown that fish oils, containing n-3 fatty acids, have protective effects against ischemia-induced, fatal cardiac arrhythmias in animals and perhaps in humans. In this study we used the whole-cell voltage-clamp technique to assess the effects of dietary, free long-chain fatty acids on the Na+ current (INa,alpha) in human embryonic kidney (HEK293t) cells transfected with the alpha-subunit of the human cardiac Na+ channel (hH1alpha). Extracellular application of 0.01 to 30 microM eicosapentaenoic acid (EPA, C20:5n-3) significantly reduced INa,alpha with an IC50 of 0.51 +/- 0.06 microM. The EPA-induced suppression of INa,alpha was concentration- and voltage-dependent. EPA at 5 microM significantly shifted the steady-state inactivation relationship by -27.8 +/- 1.2 mV (n = 6, P < 0.0001) at the V1/2 point. In addition, EPA blocked INa,alpha with a higher "binding affinity" to hH1alpha channels in the inactivated state than in the resting state. The transition from the resting state to the inactivated state was markedly accelerated in the presence of 5 microM EPA. The time for 50% recovery from the inactivation state was significantly slower in the presence of 5 microM EPA, from 2.1 +/- 0.8 ms for control to 34.8 +/- 2.1 ms (n = 5, P < 0.001). The effects of EPA on INa,alpha were reversible. Furthermore, docosahexaenoic acid (C22:6n-3), alpha-linolenic acid (C18:3n-3), conjugated linoleic acid (C18:2n-7), and oleic acid (C18:1n-9) at 5 microM and all-trans-retinoic acid at 10 microM had similar effects on INa,alpha as EPA. Even 5 microM of stearic acid (C18:0) or palmitic acid (C16:0) also significantly inhibited INa, alpha. In contrast, 5 microM EPA ethyl ester did not alter INa,alpha (8 +/- 4%, n = 8, P > 0.05). The present data demonstrate that free fatty acids suppress INa,alpha with high "binding affinity" to hH1alpha channels in the inactivated state and prolong the duration of recovery from inactivation.  相似文献   

20.
The developmental localization patterns of collagen type IV alpha1-5 chains, laminin-1, laminin-5, and laminin alpha2 chain were analyzed in the embryonic mouse eye using isoform specific antibodies and immunofluorescence microscopy. Laminin-1 isoform and alpha1-2(IV) were ubiquitously expressed along the ocular surface basement membranes at a very early stage of eye development. Alpha3-5(IV) were first detected at later stages of development, and exhibited a variable distribution pattern along the ocular surface basement membrane. In contrast, expression of the laminin alpha2 chain was restricted to the conjunctival basement membrane, and was first detected during the same developmental period in which keratin K4-positive, differentiated conjunctival epithelial cells were observed. Although laminin-5 was uniformly expressed along the adult ocular surface basement membrane, during embryogenesis it was first incorporated into the conjunctival basement membrane structure. These data suggest that some of the laminin isoforms, including laminin alpha2 and laminin-5, may play a role in the formation of a conjunctival-type basement membrane. The temporal relationship between the localization of these molecules to the conjunctival basement membrane and the appearance of differentiated conjunctival epithelial cells suggests a role for external influence on the differentiation pathways of ocular surface epithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号