首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 671 毫秒
1.
采用规程法、电气几何模型(EGM)和先导发展模型算法对"±500 kV宝鸡换流站-德阳换流站直流线路"涪江大跨越的绕击闪络率进行了计算。在电气几何模型算法中,采用了随杆塔高度变化的击距系数β,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流。分析了地线保护角对绕击闪络率的影响,结果表明,绕击闪络率随保护角的减小而减小。对涪江大跨越的雷电性能的分析计算方法可以做为国内同类大跨越线路防雷设计的参考。  相似文献   

2.
根据超、特高压杆塔的结构特点,对传统的电气几何模型(EGM)进行改进,并引入击距修正系数的概念,使得模型更加符合超、特高压杆塔的情况。从几何关系的角度提出了求解电气几何模型最大击距的改进计算方法,并应用该方法计算超、特高压交流输电线路的绕击跳闸率。计算结果表明:所提出的超、特高压交流输电线路绕击跳闸率的改进计算方法比传统计算方法更加准确、可靠。  相似文献   

3.
500 kV高杆塔输电线路绕击跳闸率计算   总被引:1,自引:0,他引:1  
为研究500 kV高杆塔输电线路的绕击耐雷性能,采用改进的电气几何模型算法,通过暴露弧地面投影计算了线路的绕击跳闸率.比较了目前常用的击距公式和击距系数公式在计算高杆塔绕击耐雷水平时的适用性,选出了较为合适的公式.实例分析时,通过ATP仿真计算得到了各杆塔的绕击耐雷水平,然后分别计算了杆塔高度,地面倾角,避雷线保护角对线路绕击跳闸率的影响,结果表明:绕击跳闸率随着杆塔高度,地面倾角,保护角的增大而增大.适当降低杆塔高度,采用负保护角是提高绕击耐雷性能的有效方法.  相似文献   

4.
王磊  肖山 《吉林电力》2010,38(1):26-29
分析了500kV/220kV同塔四回输电线路的绕击耐雷性能,采用电气几何模型法EGM来计算绕击跳闸率。采用暴露弧法计算每根导线绕击跳闸率,以暴露弧为0时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对500kV/220kV同塔四回输电线路绕击跳闸率的影响。结果表明,雷电绕击多发生在500kV线路上;随着地面倾角增大,绕击跳闸率增大;绕击跳闸率随避雷线横担长度增长而减小,但对220kV线路影响不大。通过详细分析和计算,对塔型设计方案进行了验证、比较。  相似文献   

5.
超/特高压输电线路雷电绕击防护性能研究   总被引:77,自引:4,他引:77  
输电线路跳闸的主要原因是雷击闪络,这与线路现有雷击跳闸模型与线路实际运行情况存在较大差异有关。文中以电磁场理论为基础,对高杆塔下击距系数进行研究,利用自编程序仿真,结果表明击距系数随着杆塔高度的增加而减小,雷电流幅值对击距系数没有影响,利用线性拟合方式得击距系数β与杆塔高度日的关系式为:β=1.18—H/108.69。引入击距系数,提出利用改进的电气几何模型对超特高压线路绕击耐雷性能进行分析,并以500kV鸭福线路为例进行计算和分析,结果表明根据文中仿真模型所推导的β公式计算该线路的跳闸率与实际线路运行情况比较吻合。同时,分析了杆塔高度、地面倾角、线路保护角、线路绝缘强度等对输电线路绕击耐雷性能的影响。  相似文献   

6.
基于EGM的500 kV同杆双回线路绕击跳闸率研究   总被引:1,自引:0,他引:1  
采用EGM进行500 kV 同杆双回输电线路绕击跳闸率的计算。在计算中, 引入了随杆塔高度h 变化的击距系数β, 以暴露弧为0 时对应的雷电流作为雷电的最大绕击电流,并分析了地面倾角、杆塔结构等因素对各导线绕击跳闸率的影响。计算结果表明, 随着地面倾角增大, 绕击跳闸率先增大后减小; 绕击跳闸率随避雷线横担增长而减小; 各导线绕击跳闸率与杆塔结构的关系复杂, 应分别计算分析, 而不宜仅仅求得总绕击跳闸率, 这样可以对绕击跳闸率较高的导线加强绝缘, 以提高线路的耐雷水平。  相似文献   

7.
运用电气几何模型(EGM)的方法来分析超/特高压交流输电线路的绕击耐雷性能,并给出了计及导线工作电压的绕击耐雷水平和绕击跳闸率计算式。然后,再对影响超/特高压输电线路绕击耐雷特性的雷电流幅值、杆塔高度、线路绝缘水平,线路所经过的地形、保护角、工频瞬时电压、地面植被等主要因素做了分析研究。  相似文献   

8.
利用电气几何模型(electro-geometric model,EGM)分析超高压及以下电压等级的输电线路雷电绕击性能时,因没有考虑风速以及周围植被的影响,取得的结果与运行经验不一致,针对此,提出改进的EGM,进一步分析风速的变化、击距系数对线路和绕击跳闸率的影响。结果表明:随着杆塔高度的增加,绕击跳闸率增加;当地面倾角增大时,绕击跳闸率呈非线性上升,地面倾角小于15°时对绕击率的影响不大,地面倾角大于15°时绕击率呈倍数增加;当风速小于5 m/s时,其对线路的绕击率的影响不大,当风速大于5m/s时绕击率明显增加。最后得出结论,在分析500kV同杆双回线路耐雷性能时应该考虑风速、周围植被的影响,才能使分析结果更符合实际情况。  相似文献   

9.
为了更准确地分析我国特高压输电线路雷电绕击屏蔽性能,基于我国长空气间隙放电试验数据和雷电回击观测数据,建立考虑地形条件的适应于大尺寸输电线路雷电屏蔽性能评估的改进电气几何模型(electric geometry model, EGM)并进行验证,将击距公式修正为rs = 0.13(I 2+ 40I)0.814。改进EGM模型对超、特高压输电线路三相导线的雷电绕击率计算结果与日本实际线路雷击观测数据及我国平原、山区特高压输电线路雷击模拟试验数据具有一致性,验证了改进EGM模型的适用性。采用改进EGM模型评估了杆塔型式、山坡陡度对我国特高压线路绕击跳闸率的影响。计算结果表明,采用SZ322型杆塔的绕击跳闸率高于采用SZT1型杆塔,且特高压线路绕击跳闸率随山坡陡度的增大而增大。EGM模型的修正以及计算方法的优化,对我国特高压输电线路雷电屏蔽性能的设计具有一定的指导意义。  相似文献   

10.
特高压输电线路绕击率的分析计算   总被引:1,自引:0,他引:1  
王世杰  汤强  康凯 《电力学报》2010,25(5):385-387
作为计算绕击率和绕击跳闸率的主要方法,电气几何模型法已广泛应用到输电线路防雷设计中,为改进电气几何模型法中的不合理假设,以考虑击距系数β、地面倾角θ和雷电入射角Φ的电气几何模型为依据,由模型中的几何关系,得出考虑这些因素的绕击率的计算式。针对1 000kV特高压输电线路,计算了耐雷水平下计及雷击入射角时的绕击率,并考虑了不同因素对绕击率的影响,为输电线路绕击耐雷性能的研究提供依据。  相似文献   

11.
架空输电线路雷击跳闸率影响因素研究现状   总被引:2,自引:0,他引:2  
分析对比了电气几何理论和先导发展模型等各种雷电屏蔽理论的特点 ;介绍了雷击导线时过电压波阻抗分析计算模型以及雷击杆塔波阻抗计算模型和杆塔冲击接地电阻的参数计算公式。认为雷击档间避雷线的情形和线路电压在雷击跳闸率的计算中不能忽视 ,建议开展绝缘子类型和安装形式对雷电闪络特性的影响以及双回线路相关影响因素的研究。  相似文献   

12.
500kV交流同塔四回线路的绕击耐雷性能   总被引:4,自引:2,他引:4  
为解决架设500kV同塔四回输电线路高杆塔时的雷害问题,运用改进的电气几何模型法及电磁暂态仿真程序计算了杆塔的绕击耐雷性能,得出了不同杆塔呼称高度、地面倾角、杆塔保护角和击距系数等参数时的绕击跳闸率并且详细分析了地面倾角、杆塔高度等参数对绕击跳闸率的影响。最后提出了改善500kV同塔四回绕击耐雷性能的措施,即在实际工程中,从减小杆塔高度、避雷线采用负保护角、增加绝缘子片数以及尽量避免在地面倾角较大的地点架设输电线路等几个方面综合考虑。  相似文献   

13.
输电线路防雷计算软件开发和应用   总被引:2,自引:0,他引:2  
为找出雷击跳闸的原因并采取一定的改进措施,介绍了一套线路防雷设计计算软件HVC的开发和应用。该软件适合用户对新建线路的耐雷水平进行设计、校核,并可分析已有线路雷击跳闸故障的原因。软件所用算法在国家97技术规程的基础上,综合考虑了现有的各种评价耐雷水平的方法,并兼顾了计算的准确性和速度。对220 kV实际线路的演算证明计算所得跳闸率等结果与线路实际运行情况一致。  相似文献   

14.
750kV单回和同杆双回输电线路反击耐雷性能   总被引:2,自引:0,他引:2  
利用ATP-EMTP仿真程序对单回和同塔双回750 kV输电线路典型杆塔的反击耐雷性能及其影响因素进行了仿真计算研究。研究中杆塔采用了多波阻抗模型,考虑了雷电波在杆塔中的传播速度、杆塔呼称高度及杆塔接地电阻等因素的影响,采用统计法确定750 kV超高压线路的反击耐雷性能。研究结果表明:杆塔中的传播速度影响不可忽略;随着杆塔高度的降低,冲击接地电阻的减小,线路反击性能增强;导线排列方式和档距的变化,对线路反击性能影响很小;对于ZB329和ZGU315型杆塔,仅其单回反击跳闸率都会高于预期雷击跳闸率,因此在建设750 kV输电线路时,需要认真计算研究输电线路的反击耐雷性能。  相似文献   

15.
黄彭  武坤  王沛  房正刚  孙海峰 《中国电力》2017,50(8):106-112
针对山区地形坡度影响输电线路杆塔防雷性能的问题,为降低山区输电线路的雷击跳闸率,设计了一种220 kV新型错层横担直线塔。分析了错层横担直线塔在不同坡度条件下的防雷性能,确定了错层横担杆塔在山区地形的可行性,建立了新型错层结构杆塔的多波阻抗模型及其接地体等效电路模型。基于PSCAD软件搭建了错层横担杆塔的整体模型,仿真计算出了杆塔的反击跳闸率;建立了适用于新型错层杆塔求解绕击跳闸率的电气几何模型,并推导了求解的计算公式;分析比较了错层横担杆塔在几种坡度条件下的雷击跳闸率的数据结果。通过常规杆塔和错层杆塔的雷击跳闸率对比发现,错层横担结构有效地提高了杆塔的耐雷水平。研究结论可为山区错层横担杆塔输电线路防雷设计、防雷改造以及线路运行和维护提供参考。  相似文献   

16.
特高压输电线路防雷,是保证特高压输电线路安全运行的重要环节之一。介绍并分析了利用规程法和电气几何模型法对1 000 kV特高压输电线路绕击、反击以及雷电直击中线进行雷击计算的结果,并据此提出了减小1 000 kV特高压输电线路雷击跳闸率的具体措施。  相似文献   

17.
基于改进电气几何模型的输电线路雷电屏蔽性能的研究   总被引:4,自引:1,他引:3  
为了提高线路绕击耐雷性能,笔者研究了高压输电线路绕击耐雷性能的分析方法,对考虑击距系数K和地面倾角θ后的电气几何模型,以杆塔中心线与大地交点作参考点,推导了最大击距的计算方法,同时探讨了最大击距不存在情形下击距系数K、避雷线保护角α、地面倾角θ的关系问题,论证了可以通过平衡K、α、θ的取值而有效提高线路绕击耐雷性能。  相似文献   

18.
输电线路雷电绕击及其防雷研究   总被引:5,自引:1,他引:5  
基于Whitehead电气几何模型原理对输电线路防雷提出如下建议:伸入城市的110kV或220kV线路可以不设架空避雷线,并将导线稍为抬高,以减少输电线路的成本和其电磁场对居民的影响;在保证足够安全距离的前提下,保护和种植线路下面的灌木有利于防雷;对跨过雷电活动频繁山谷的输电线路,可以另拉一条与线路平行的钢绞线作为侧面架空避雷线,以防止侧面雷击。还建议用屏蔽效率作为杆塔和输电线路防雷电绕击的指标;并按杆塔所在地面倾角的大小或不同雷电日地区选择合适的保护角塔型,使同一条线路具有基本一致的屏蔽效率。  相似文献   

19.
输电线路架空地线逐基接地时存在感应电流和电能损耗,目前对架空地线感应电流数值大小和影响机制的研究较少,对架空地线损耗问题重视不足。以某双回线路为例进行了架空地线感应电流现场实测和ATP-EMTP数值计算,计算了不同线路长度、档距、导地线型号、导地线空间布置等输电线路结构参数对架空地线感应电流和电能损耗的影响。计算结果表明:线路起始段(长度小于9 km)时架空地线感应电流随着线路长度增大而增大;不同档距和导线型号通过导线弧垂变化影响架空地线感应电流和电能损耗;地线感应电流和电能损耗随着导地线空间距离增大而减小,随导地线高度变化明显,导线相间距和地线间距影响小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号