首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ciliary and flagellar movements are explained by active sliding between the outer doublet microtubules of an axoneme via their inner and outer dynein arms. Purealin, a novel bioactive principle of a sea sponge Psammaplysilla purea, blocked the motility of Triton-demembranated sea urchin sperm flagella within 5 min at concentrations above 20 microM. In a similar concentration range, purealin blocked the sliding movement of the flagellar axonemes in vitro within a few minutes judging from the turbidity measurements. The ATPase activity of axonemes was partially inhibited by purealin in a concentration-dependent manner. The maximum inhibition reached approximately 50% at concentrations above 20 microM, indicating that half the axonemal ATPase activity is sensitive to purealin. Similar results were observed on the ATPase activity of outer-arm-depleted axonemes and that of a mixture of 21S dynein and salt-extracted axonemes. On the other hand, ATPase activity of isolated 21S dynein was not inhibited by purealin. The inhibitory action of purealin on the axonemal ATPases was reversed by dilution of purealin. The effect of purealin on the double-reciprocal plot of the ATPase activity as a function of ATP concentrations showed that the inhibition was not a competitive type. In accord with this finding, purealin did not affect the vanadate-mediated UV photocleavage of axonemal dyneins. These results suggest that purealin binds reversibly to a site other than the catalytic ATP-binding site and inhibits half the ATPase activity of axonemes. Taken together, our results suggest that purealin-sensitive ATPase activity of the dynein arms plays an essential role in generating the sliding movement of flagellar axonemes.  相似文献   

2.
We have used an insertional mutagenesis/ gene tagging technique to generate new Chlamydomonas reinhardtii mutants that are defective in assembly of the uter ynein rm. Among 39 insertional oda mutants characterized, two are alleles of the previously uncloned ODA3 gene, one is an allele of the uncloned ODA10 gene, and one represents a novel ODA gene (termed ODA12). ODA3 is of particular interest because it is essential for assembly of both the outer dynein arm and the outer dynein arm docking complex (ODA-DC) onto flagellar doublet microtubules (Takada, S., and R. Kamiya. 1994. J. Cell Biol. 126:737- 745). Beginning with the inserted DNA as a tag, the ODA3 gene and a full-length cDNA were cloned. The cloned gene rescues the phenotype of oda3 mutants. The cDNA sequence predicts a novel 83. 4-kD protein with extensive coiled-coil domains. The ODA-DC contains three polypeptides; direct amino acid sequencing indicates that the largest of these polypeptides corresponds to ODA3. This protein is likely to have an important role in the precise positioning of the outer dynein arms on the flagellar axoneme.  相似文献   

3.
As a molecular motor, dynein must coordinate ATP hydrolysis with conformational changes that lead to processive interactions with a microtubule and generate force. To understand how these processes occur, we have begun to map functional domains of a dynein heavy chain from Dictyostelium. The carboxyl-terminal 10-kilobase region of the heavy chain encodes a 380-kDa polypeptide that approximates the globular head domain. Attempts to further truncate this region fail to produce polypeptides that either bind microtubules or UV-vanadate cleave, indicating that the entire 10-kilobase fragment is necessary to produce a properly folded functional dynein head. We have further identified a region just downstream from the fourth P-loop that appears to constitute at least part of the microtubule-binding domain (amino acids 3182-3818). When deleted, the resulting head domain polypeptide no longer binds microtubules; when the excised region is expressed in vitro, it cosediments with added tubulin polymer. This microtubule-binding domain falls within an area of the molecule predicted to form extended alpha-helices. At least four discrete sites appear to coordinate activities required to bind the tubulin polymer, indicating that the interaction of dynein with microtubules is complex.  相似文献   

4.
Several enzymes, including cytoplasmic and flagellar outer arm dynein, share an Mr 8,000 light chain termed LC8. The function of this chain is unknown, but it is highly conserved between a wide variety of organisms. We have identified deletion alleles of the gene (fla14) encoding this protein in Chlamydomonas reinhardtii. These mutants have short, immotile flagella with deficiencies in radial spokes, in the inner and outer arms, and in the beak-like projections in the B tubule of the outer doublet microtubules. Most dramatically, the space between the doublet microtubules and the flagellar membrane contains an unusually high number of rafts, the particles translocated by intraflagellar transport (IFT) (Kozminski, K.G., P.L. Beech, and J.L. Rosenbaum. 1995. J. Cell Biol. 131:1517-1527). IFT is a rapid bidirectional movement of rafts under the flagellar membrane along axonemal microtubules. Anterograde IFT is dependent on a kinesin whereas the motor for retrograde IFT is unknown. Anterograde IFT is normal in the LC8 mutants but retrograde IFT is absent; this undoubtedly accounts for the accumulation of rafts in the flagellum. This is the first mutation shown to specifically affect retrograde IFT; the fact that LC8 loss affects retrograde IFT strongly suggests that cytoplasmic dynein is the motor that drives this process. Concomitant with the accumulation of rafts, LC8 mutants accumulate proteins that are components of the 15-16S IFT complexes (Cole, D.G., D.R. Deiner, A.L. Himelblau, P.L. Beech, J.C. Fuster, and J.L. Rosenbaum. 1998. J. Cell Biol. 141:993-1008), confirming that these complexes are subunits of the rafts. Polystyrene microbeads are still translocated on the surface of the flagella of LC8 mutants, indicating that the motor for flagellar surface motility is different than the motor for retrograde IFT.  相似文献   

5.
Fast axonal transport is characterized by the bidirectional, microtubule-based movement of membranous organelles. Cytoplasmic dynein is necessary but not sufficient for retrograde transport directed from the synapse to the cell body. Dynactin is a heteromultimeric protein complex, enriched in neurons, that binds to both microtubules and cytoplasmic dynein. To determine whether dynactin is required for retrograde axonal transport, we examined the effects of anti-dynactin antibodies on organelle transport in extruded axoplasm. Treatment of axoplasm with antibodies to the p150(Glued) subunit of dynactin resulted in a significant decrease in the velocity of microtubule-based organelle transport, with many organelles bound along microtubules. We examined the molecular mechanism of the observed inhibition of motility, and we demonstrated that antibodies to p150(Glued) disrupted the binding of cytoplasmic dynein to dynactin and also inhibited the association of cytoplasmic dynein with organelles. In contrast, the anti-p150(Glued) antibodies had no effect on the binding of dynactin to microtubules nor on cytoplasmic dynein-driven microtubule gliding. These results indicate that the interaction between cytoplasmic dynein and the dynactin complex is required for the axonal transport of membrane-bound vesicles and support the hypothesis that dynactin may function as a link between the organelle, the microtubule, and cytoplasmic dynein during vesicle transport.  相似文献   

6.
Forces generated by protein polymerization are important for various forms of cellular motility. Assembling microtubules, for instance, are believed to exert pushing forces on chromosomes during mitosis. The force that a single microtubule can generate was measured by attaching microtubules to a substrate at one end and causing them to push against a microfabricated rigid barrier at the other end. The subsequent buckling of the microtubules was analyzed to determine both the force on each microtubule end and the growth velocity. The growth velocity decreased from 1.2 micrometers per minute at zero force to 0.2 micrometer per minute at forces of 3 to 4 piconewtons. The force-velocity relation fits well to a decaying exponential, in agreement with theoretical models, but the rate of decay is faster than predicted.  相似文献   

7.
We used transgenic analysis in Drosophila to compare the ability of two structurally similar alpha-tubulin isoforms to support microtubule assembly in vivo. Our data revealed that even closely related alpha-tubulin isoforms have different functional capacities. Thus, in multicellular organisms, even small changes in tubulin structure may have important consequences for regulation of the microtubule cytoskeleton. In spermatogenesis, all microtubule functions in the postmitotic male germ cells are carried out by a single tubulin heterodimer composed of the major Drosophila alpha-84B tubulin isoform and the testis-specific beta 2-tubulin isoform. We tested the ability of the developmentally regulated alpha 85E-tubulin isoform to replace alpha 84B in spermatogenesis. Even though it is 98% similar in sequence, alpha 85E is not functionally equivalent to alpha 84B. alpha 85E can support some functional microtubules in the male germ cells, but alpha 85E causes dominant male sterility if it makes up more than one-half of the total alpha-tubulin pool in the spermatids. alpha 85E does not disrupt meiotic spindle or cytoplasmic microtubules but causes defects in morphogenesis of the two classes of singlet microtubules in the sperm tail axoneme, the central pair and the accessory microtubules. Axonemal defects caused by alpha 85E are precisely reciprocal to dominant defects in doublet microtubules we observed in a previous study of ectopic germ-line expression of the developmentally regulated beta 3-tubulin isoform. These data demonstrate that the doublet and singlet axoneme microtubules have different requirements for alpha- and beta-tubulin structure. In their normal sites of expression, alpha 85E and beta 3 are coexpressed during differentiation of several somatic cell types, suggesting that alpha 85E and beta 3 might form a specialized heterodimer. Our tests of different alpha-beta pairs in spermatogenesis did not support this model. We conclude that if alpha 85E and beta 3 have specialized properties required for their normal functions, they act independently to modulate the properties of microtubules into which they are incorporated.  相似文献   

8.
A stochastic computational method developed for analysis of two-state cross-bridge models was extended and used to compute the oscillatory movement generated by three-state cross-bridge models containing a rate function proportional to ATP concentration. Only one of the possible three-state models appears satisfactory; with this model, the frequency of oscillation, at constant amplitude, responds to changes in both ATP concentration and viscosity in the same way as real flagella. In this model, ATP binding causes cross-bridge detachment, which is rate limiting at low ATP concentrations; while at high ATP concentrations a transition between two attached states limits the rate of cross-bridge detachment. Since this model agrees with observations on actomyosin ATPase kinetics, the data on flagellar oscillation frequency support the idea that the movement-generating mechanisms of flagella and muscle are similar.  相似文献   

9.
We have recently identified a microtubule binding domain within the motor protein cytoplasmic dynein. This domain is situated at the end of a slender 10-12 nm projection which corresponds to the stalks previously observed extending from the heads of both axonemal and cytoplasmic dyneins. The stalks also correspond to the B-links observed to connect outer arm axonemal dyneins to the B-microtubules in flagella and constitute the microtubule attachment sites during dynein motility. The stalks contrast strikingly with the polymer attachment domains of the kinesins and myosins which are found on the surface of the motor head. The difference in dynein's structural design raises intriguing questions as to how the stalk functions in force production along microtubules. In this article, we attempt to integrate the myriad of biochemical and EM structural data that has been previously collected regarding dynein with recent molecular findings, in an effort to begin to understand the mechanism of dynein motility.  相似文献   

10.
The dipteran Monarthropalpus flavus possesses a peculiar sperm axoneme, characterized by multiple rows of microtubular doublets linked by the outer dynein arms only, lacking any equivalent of the central pair/radial spoke complex. The structure of these dynein molecules was studied by electron microscopy (EM). Using the quick-freeze, deep-etch method of EM, they were found to be similar to outer dynein arms described previously. Two globular "heads," each subdivided by a cleft, are clearly discernible. "Stalks" extend from proximal head to contact the B-tubule of the adjacent doublet. Unlike the situation in vertebrate sperm, the stalks sometimes branch into two thinner strands that contact the B-tubule at different sites. Treatment of demembranated sperm cells with ATP and vanadate induces conformational changes in the dynein outer arms. These are interpreted as the result of rotation of the dynein head with respect to what is observed in axonemes in rigor condition (after ATP depletion). SDS-PAGE indicates that the high-molecular-weight complement of this molecule comprises a single heavy chain. Specific dynein heavy chain-related DNA sequences corresponding to the catalytic-phosphate binding region were amplified by RT-PCR. Only one axonemal dynein sequence was identified among all amplified fragments. Southern blot analysis performed on genomic DNA using this sequence as a probe identified two hybridizing genes, only one of which is able to encode a functional product. Thus, genetic analysis indicates that this axonemal outer arm dynein is a homodymer of a single heavy chain subunit. In vivo, spermatozoa of this species are stored in a rolled configuration in female spermatheca, where they move rapidly with a wave-like motion. This movement could not be reproduced in vitro, except when spermatozoa were constrained in a bent configuration by some mechanical impediment. We propose that, in the absence of both the central pair/radial spoke complex and the inner arms, a curvature-dependent activation acts to trigger motility in these spermatozoa.  相似文献   

11.
Adaptive compensation of enzymatic activities is common among cold-living poikilotherms. Their enzymes often demonstrate higher activities at low temperatures than do homologs from temperate or thermophilic species. To understand the molecular features necessary for cold adaptation of microtubule motor proteins, we have initiated studies of the flagellar dynein ATPases of Antarctic fishes (body temperature range = -1.8 to +2 degrees C). Dyneins were isolated by high-salt extraction of demembranated sperm axonemes from the Antarctic yellowbelly rockcod, Notothenia coriiceps. Although solubilization of inner arms was incomplete, an inner arm dynein was recognized as a discrete complex containing one major dynein heavy chain (DHC) and sedimenting through sucrose gradients at approximately 12 S. Like inner arm dyneins from Chlamydomonas, the fish complex contained an actin-immunoreactive protein of 43 kDa and a 30-kDa protein. One isoform of the inner arm DHC gene family of N. coriiceps was detected by the polymerase chain reaction, and Southern analysis established that this DHC gene is present at one copy per haploid genome. Outer arm dynein was extracted quantitatively by high-salt treatment, contained two DHCs (one major, one minor), and sedimented through sucrose gradients as a polydisperse, aggregating system. Associated with the outer arm DHCs were five presumptive intermediate chains (ICs) of 66-91 kDa, immunologically defined by their cross-reactivity to four monoclonal antibodies specific for ICs from other organisms. The basal (non-microtubule-stimulated) specific ATPase activities of the N. coriiceps inner and outer arm dyneins were approximately 0.07 and approximately 0.04 micromol of P(i) min(-1) mg(-1), respectively, at 0 degrees C, attained their maxima (approximately 0.1 micromol of P(i) min(-1) mg(-1)) at 9 and 19 degrees C, respectively, and at higher temperatures declined substantially. Furthermore, the activities of the fish dyneins at temperatures < or = 15 degrees C were significantly larger than that of outer arm dynein from the mesophile Tetrahymena. These results suggest that the greater catalytic efficiencies of N. coriiceps inner and outer arm dyneins at low temperatures are due to enhanced polypeptide flexibility in the active sites of their protein subunits. We conclude that temperature adaptation of flagellar dyneins from Antarctic fishes is compatible with substantial conservation of primary and quaternary structure.  相似文献   

12.
One of the challenges in understanding ciliary and flagellar motility is determining the mechanisms that locally regulate dynein-driven microtubule sliding. Our recent studies demonstrated that microtubule sliding, in Chlamydomonas flagella, is regulated by phosphorylation. However, the regulatory proteins remain unknown. Here we identify the 138-kD intermediate chain of inner arm dynein I1 as the critical phosphoprotein required for regulation of motility. This conclusion is founded on the results of three different experimental approaches. First, genetic analysis and functional assays revealed that regulation of microtubule sliding, by phosphorylation, requires inner arm dynein I1. Second, in vitro phosphorylation indicated the 138-kD intermediate chain of I1 is the only phosphorylated subunit. Third, in vitro reconstitution demonstrated that phosphorylation and dephosphorylation of the 138-kD intermediate chain inhibits and restores wild-type microtubule sliding, respectively. We conclude that change in phosphorylation of the 138-kD intermediate chain of I1 regulates dynein-driven microtubule sliding. Moreover, based on these and other data, we predict that regulation of I1 activity is involved in modulation of flagellar waveform.  相似文献   

13.
The focusing of microtubules into mitotic spindle poles in vertebrate somatic cells has been assumed to be the consequence of their nucleation from centrosomes. Contrary to this simple view, in this article we show that an antibody recognizing the light intermediate chain of cytoplasmic dynein (70.1) disrupts both the focused organization of microtubule minus ends and the localization of the nuclear mitotic apparatus protein at spindle poles when injected into cultured cells during metaphase, despite the presence of centrosomes. Examination of the effects of this dynein-specific antibody both in vitro using a cell-free system for mitotic aster assembly and in vivo after injection into cultured cells reveals that in addition to its direct effect on cytoplasmic dynein this antibody reduces the efficiency with which dynactin associates with microtubules, indicating that the antibody perturbs the cooperative binding of dynein and dynactin to microtubules during spindle/aster assembly. These results indicate that microtubule minus ends are focused into spindle poles in vertebrate somatic cells through a mechanism that involves contributions from both centrosomes and structural and microtubule motor proteins. Furthermore, these findings, together with the recent observation that cytoplasmic dynein is required for the formation and maintenance of acentrosomal spindle poles in extracts prepared from Xenopus eggs (Heald, R., R. Tournebize, T. Blank, R. Sandaltzopoulos, P. Becker, A. Hyman, and E. Karsenti. 1996. Nature (Lond.). 382: 420-425) demonstrate that there is a common mechanism for focusing free microtubule minus ends in both centrosomal and acentrosomal spindles. We discuss these observations in the context of a search-capture-focus model for spindle assembly.  相似文献   

14.
The interplay between microtubules and the motor enzyme, cytoplasmic dynein, is essential for organisation of the cytoplasm, organelle transport, and cell division in eukaryotic cells. During mitosis, cytoplasmic dynein organises microtubules into two spindle pole asters, as well as the comparable multiple cytoplasmic asters induced by the microtubule-stabilising agent taxol. The mechanisms behind this cell cycle-regulated organisation are, however, not fully understood. We report here that the unidirectional dynein-dependent pigment organelle aggregation in taxol-treated melanophores from Atlantic cod, induces multiple microtubule asters. Usually, the pigment aggregates to a central pigment mass in the cell center, but pigment aggregation in taxol-treated cells induces formation of several peripheral pigment clusters that each localise to the center of a microtubule aster formation. When a cell with previously formed peripheral pigment clusters redisperse pigment, the asters disappear. Upon a subsequent reaggregation of the pigment, the aster formations reappear. The results indicate that the pigment aggregation process organises the microtubules into these formations. Immuno-electron microscopy of isolated pigment organelles indicates the presence of several dynein molecules on each pigment organelle, making it possible for each organelle to interact with several microtubules and thereby focusing microtubule minus ends. The possibility of unidirectional dynein-dependent organelle movement for organising microtubules into asters during cell division, and similarities in signal transduction between mitosis and pigment movement, are discussed.  相似文献   

15.
Cytoplasmic dynein is a minus end-directed microtubule motor that performs distinct functions in interphase and mitosis. In interphase, dynein transports organelles along microtubules, whereas in metaphase this motor has been implicated in mitotic spindle formation and orientation as well as chromosome segregation. The manner in which dynein activity is regulated during the cell cycle, however, has not been resolved. In this study, we have examined the mechanism by which organelle transport is controlled by the cell cycle in extracts of Xenopus laevis eggs. Here, we show that photocleavage of the dynein heavy chain dramatically inhibits minus end-directed organelle transport and that purified dynein restores this motility, indicating that dynein is the predominant minus end-directed membrane motor in Xenopus egg extracts. By measuring the amount of dynein associated with isolated membranes, we find that cytoplasmic dynein and its activator dynactin detach from the membrane surface in metaphase extracts. The sevenfold decrease in membrane-associated dynein correlated well with the eightfold reduction in minus end-directed membrane transport observed in metaphase versus interphase extracts. Although dynein heavy or intermediate chain phosphorylation did not change in a cell cycle-dependent manner, the dynein light intermediate chain incorporated approximately 12-fold more radiolabeled phosphate in metaphase than in interphase extracts. These studies suggest that cell cycle-dependent phosphorylation of cytoplasmic dynein may regulate organelle transport by modulating the association of this motor with membranes.  相似文献   

16.
The transport of vesicular organelles along microtubules has been well documented in a variety of systems, but the molecular mechanisms underlying this process are not well understood. We have developed a method for preparing extracts from Dictyostelium discoideum which supports high levels of bidirectional, microtubule-based vesicle transport in vitro. This organelle transport assay was also adapted to observe specifically the motility of vesicles in the endocytic pathway. Vesicle transport can be reconstituted by recombining a high-speed supernatant with KI-washed organelles, which do not move in the absence of supernatant. Furthermore, a microtubule affinity-purified motor fraction supports robust bidirectional movement of the salt-washed organelles. The plus and minus end-directed transport activities can be separated by exploiting differences in their affinities for microtubules in the presence of 0.3 M KCl. We also used our assay to examine organelle transport in a strain of Dictyostelium overexpressing a 380-kDa C-terminal fragment of the cytoplasmic dynein heavy chain, which displays an altered microtubule pattern (380-kDa cells; [Koonce and Samso, Mol. Biol. Cell 7:935-948, 1996]). We have found that the frequency and velocity of minus end-directed membrane organelle movements were significantly reduced in 380-kDa cells relative to wild-type cells, while the frequency and velocity of plus end-directed movements were equivalent in the two cell types. The 380-kDa C-terminal fragment cosedimented with membrane organelles, although its affinity was significantly lower than that of native dynein. An impaired membrane-microtubule interaction may be responsible for the altered microtubule patterns in the 380-kDa cells.  相似文献   

17.
Proteins necessary for maintenance and function of eukaryotic flagella are synthesized in the cell body. Transport of the inner dynein arm subunit p28(IDA4) in Chlamydomonas flagella requires the activity of the kinesin KHP1(FLA10), a protein inactive at restrictive temperature in fla10, a temperature-dependent mutant of flagellar assembly. To identify other molecules involved in active transport of inner dynein arms within flagella we searched for polypeptides of the cytoplasmic matrix of flagella that fulfill two conditions: they bind to p28 and require the activity of KHP1 to be present in flagella. We found that the cytoplasmic matrix of flagella contains a previously unidentified "17S" complex of at least 13 polypeptides that in part is associated with p28. The 17S complex is present at permissive but not at restrictive temperature in fla10 flagella. It also turns over in the cytoplasmic matrix more frequently than dynein arms within the axoneme. This evidence suggests that the 17S complex transports precursors of inner dynein arms within flagella.  相似文献   

18.
Kinesin hydrolyses one ATP per 8-nm step   总被引:1,自引:0,他引:1  
Kinesin is a two-headed, ATP-dependent motor protein that moves along microtubules in discrete steps of 8 nm. In vitro, single molecules produce processive movement; motors typically take approximately 100 steps before releasing from a microtubule. A central question relates to mechanochemical coupling in this enzyme: how many molecules of ATP are consumed per step? For the actomyosin system, experimental approaches to this issue have generated considerable controversy. Here we take advantage of the processivity of kinesin to determine the coupling ratio without recourse to direct measurements of ATPase activity, which are subject to large experimental uncertainties. Beads carrying single molecules of kinesin moving on microtubules were tracked with high spatial and temporal resolution by interferometry. Statistical analysis of the intervals between steps at limiting ATP, and studies of fluctuations in motor speed as a function of ATP concentration, allow the coupling ratio to be determined. At near-zero load, kinesin molecules hydrolyse a single ATP molecule per 8-nm advance. This finding excludes various one-to-many and many-to-one coupling schemes, analogous to those advanced for myosin, and places severe constraints on models for movement.  相似文献   

19.
Intracellular transport along microtubules uses the motor proteins cytoplasmic dynein and kinesin. Cytoplasmic dynein is responsible for movement to the minus ends of microtubules and the evidence indicates that dynein interacts with another protein complex, dynactin. In order to better understand how these proteins function, we have sought to identify and clone the subunit polypeptides of these two complexes, in particular their light chains. Dynactin is made up of eight subunits of approximately 24,000 to 160,000 Da. In order to clone the p24 subunit, the components of purified dynactin were resolved by SDS polyacrylamide gel electrophoresis. The amino acid sequence of a tryptic peptide from the 24,000-Mr region of the gel was obtained and a candidate polypeptide identified by a screen of the databases. This polypeptide has a predicted molecular weight of 20,822 Da. Using an antibody to a different region of this protein, we demonstrate that it copurifies with microtubules and elutes from the microtubule pellet with characteristics similar to those of the dynactin complex and distinct from those of cytoplasmic dynein. This polypeptide co-sediments with dynactin on sucrose density gradients and it also co-immunoprecipitates with dynactin, but not with kinesin or cytoplasmic dynein. Together these results demonstrate that this polypeptide is the p24 subunit of dynactin. Analysis of the predicted amino acid sequence of p24 shows that it is a unique protein that has no significant similarity to known enzymes or other proteins. Structural analysis indicates that most of this protein will form an alpha-helix and that portions of the molecule may participate in the formation of coiled-coils. Since stoichiometric analysis of dynactin indicates that there is one molecule of p24 per dynactin complex, these characteristics suggest that this polypeptide may be involved in protein-protein interactions, perhaps in the assembly of the dynactin complex.  相似文献   

20.
In many eukaryotic cells going through M-phase, a bipolar spindle is formed by microtubules nucleated from centrosomes. These microtubules, in addition to being "captured" by kinetochores, may be stabilized by chromatin in two different ways: short-range stabilization effects may affect microtubules in close contact with the chromatin, while long-range stabilization effects may "guide" microtubule growth towards the chromatin (e.g., by introducing a diffusive gradient of an enzymatic activity that affects microtubule assembly). Here, we use both meiotic and mitotic extracts from Xenopus laevis eggs to study microtubule aster formation and microtubule dynamics in the presence of chromatin. In "low-speed" meiotic extracts, in the presence of salmon sperm chromatin, we find that short-range stabilization effects lead to a strong anisotropy of the microtubule asters. Analysis of the dynamic parameters of microtubule growth show that this anisotropy arises from a decrease in the catastrophe frequency, an increase in the rescue frequency and a decrease in the growth velocity. In this system we also find evidence for long-range "guidance" effects, which lead to a weak anisotropy of the asters. Statistically relevant results on these long-range effects are obtained in "high-speed" mitotic extracts in the presence of artificially constructed chromatin stripes. We find that aster anisotropy is biased in the direction of the chromatin and that the catastrophe frequency is reduced in its vicinity. In this system we also find a surprising dependence of the catastrophe and the rescue frequencies on the length of microtubules nucleated from centrosomes: the catastrophe frequency increase and the rescue frequency decreases with microtubule length.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号