首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
Uniform metal nanomesh structures are promising candidates that may replace of indium‐tin oxide (ITO) in transparent conducting electrodes (TCEs). However, the durability of the uniform metal mesh has not yet been studied. For this reason, a comparative analysis of the durability of TCEs based on pure Ag and AgNi nanomesh, which are fabricated by using simple transfer printing, is performed. The AgNi nanomesh shows high long‐term stability to oxidation, heat, and chemicals compared with that of pure Ag nanomesh. This is because of nickel in the AgNi nanomesh. Furthermore, the AgNi nanomesh shows strong adhesion to a transparent substrate and good stability after repeated bending.  相似文献   

8.
9.
10.
11.
12.
13.
14.
A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in‐situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as‐prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high‐performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface‐to‐volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low‐cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.  相似文献   

15.
16.
17.
In this report, the development of conventional, mass‐printing strategies into high‐resolution, alternative patterning techniques is reviewed with the focus on large‐area patterning of flexible thin‐film transistors (TFTs) for display applications. In the first part, conventional and digital printing techniques are introduced and categorized as far as their development is relevant for this application area. The limitations of conventional printing guides the reader to the second part of the progress report: alternative‐lithographic patterning on low‐cost flexible foils for the fabrication of flexible TFTs. Soft and nanoimprint lithography‐based patterning techniques and their limitations are surveyed with respect to patterning on low‐cost flexible foils. These show a shift from fabricating simple microlense structures to more complicated, high‐resolution electronic devices. The development of alternative, low‐temperature processable materials and the introduction of high‐resolution patterning strategies will lead to the low‐cost, self‐aligned fabrication of flexible displays and solar cells from cheaper but better performing organic materials.  相似文献   

18.
19.
2D layered nanomaterials with strong covalent bonding within layers and weak van der Waals' interactions between layers have attracted tremendous interest in recent years. Layered Bi2Se3 is a representative topological insulator material in this family, which holds promise for exploration of the fundamental physics and practical applications such as transparent electrode. Here, a simultaneous enhancement of optical transmittancy and electrical conductivity in Bi2Se3 grid electrodes by copper‐atom intercalation is presented. These Cu‐intercalated 2D Bi2Se3 electrodes exhibit high uniformity over large area and excellent stabilities to environmental perturbations, such as UV light, thermal fluctuation, and mechanical distortion. Remarkably, by intercalating a high density of copper atoms, the electrical and optical performance of Bi2Se3 grid electrodes is greatly improved from 900 Ω sq?1, 68% to 300 Ω sq?1, 82% in the visible range; with better performance of 300 Ω sq?1, 91% achieved in the near‐infrared region. These unique properties of Cu‐intercalated topological insulator grid nanostructures may boost their potential applications in high‐performance optoelectronics, especially for infrared optoelectronic devices.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号