共查询到6条相似文献,搜索用时 0 毫秒
1.
An Huang Haodong Liu Ofer Manor Ping Liu James Friend 《Advanced materials (Deerfield Beach, Fla.)》2020,32(14):1907516
Both powerful and unstable, practical lithium metal batteries have remained a difficult challenge for over 50 years. With severe ion depletion gradients in the electrolyte during charging, they rapidly develop porosity, dendrites, and dead Li that cause poor performance and, all too often, spectacular failure. Remarkably, incorporating a small, 100 MHz surface acoustic wave device (SAW) solves this problem. Providing acoustic streaming electrolyte flow during charging, the device enables dense Li plating and avoids porosity and dendrites. SAW-integrated Li cells can operate up to 6 mA cm−2 in a commercial carbonate-based electrolyte; omitting the SAW leads to short circuiting at 2 mA cm−2. The Li deposition is morphologically dendrite-free and close to theoretical density when cycling with the SAW. With a 245 µm thick Li anode in a full Li||LFP (LiFePO4) cell, introducing the SAW increases the uncycled Li from 145 to 225 µm, decreasing Li consumption from 41% to only 8%. A closed-form model is provided to explain the phenomena and serve as a design tool for integrating this chemistry-agnostic approach into batteries whatever the chemistry within. 相似文献
2.
3.
4.
5.
A Bio‐Acoustic Levitational (BAL) Assembly Method for Engineering of Multilayered, 3D Brain‐Like Constructs,Using Human Embryonic Stem Cell Derived Neuro‐Progenitors 下载免费PDF全文
Charlène Bouyer Pu Chen Tuğrul Tolga Demirtaş Thomas J. F. Nieland Frédéric Padilla Utkan Demirci 《Advanced materials (Deerfield Beach, Fla.)》2016,28(1):161-167
6.
Microelectronic Devices: Focused Energy Field Method for the Localized Synthesis and Direct Integration of 1D Nanomaterials on Microelectronic Devices (Adv. Mater. 7/2015) 下载免费PDF全文
Daejong Yang Donghwan Kim Seung Hwan Ko Albert P. Pisano Zhiyong Li Inkyu Park 《Advanced materials (Deerfield Beach, Fla.)》2015,27(7):1133-1133