首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The search for low‐cost, large‐area, flexible devices has led to a remarkable increase in the research and development of organic semiconductors, which serve as one of the most important components for organic field‐effect transistors (OFETs). In the current review, we highlight deposition techniques that offer precise control over the location or in‐plane orientation of organic semiconductors. We focus on various vapor‐ and solution‐processing techniques for patterning organic single crystals in desired locations. Furthermore, the alignment of organic semiconductors via different methods relying on mechanical forces, alignment layers, epitaxial growth, and external magnetic and electric fields are surveyed. The advantages, limitations, and applications of these techniques in OFETs are also discussed.  相似文献   

3.
4.
5.
A high‐mobility organic semiconductor employed as the active material in a field‐effect transistor does not guarantee per se that expectations of high performance are fulfilled. This is even truer if a downscaled, short channel is adopted. Only if contacts are able to provide the device with as much charge as it needs, with a negligible voltage drop across them, then high expectations can turn into high performances. It is a fact that this is not always the case in the field of organic electronics. In this review, we aim to offer a comprehensive overview on the subject of current injection in organic thin film transistors: physical principles concerning energy level (mis)alignment at interfaces, models describing charge injection, technologies for interface tuning, and techniques for characterizing devices. Finally, a survey of the most recent accomplishments in the field is given. Principles are described in general, but the technologies and survey emphasis is on solution processed transistors, because it is our opinion that scalable, roll‐to‐roll printing processing is one, if not the brightest, possible scenario for the future of organic electronics. With the exception of electrolyte‐gated organic transistors, where impressively low width normalized resistances were reported (in the range of 10 Ω·cm), to date the lowest values reported for devices where the semiconductor is solution‐processed and where the most common architectures are adopted, are ~10 kΩ·cm for transistors with a field effect mobility in the 0.1–1 cm2/Vs range. Although these values represent the best case, they still pose a severe limitation for downscaling the channel lengths below a few micrometers, necessary for increasing the device switching speed. Moreover, techniques to lower contact resistances have been often developed on a case‐by‐case basis, depending on the materials, architecture and processing techniques. The lack of a standard strategy has hampered the progress of the field for a long time. Only recently, as the understanding of the rather complex physical processes at the metal/semiconductor interfaces has improved, more general approaches, with a validity that extends to several materials, are being proposed and successfully tested in the literature. Only a combined scientific and technological effort, on the one side to fully understand contact phenomena and on the other to completely master the tailoring of interfaces, will enable the development of advanced organic electronics applications and their widespread adoption in low‐cost, large‐area printed circuits.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
The advantages of organic field‐effect transistors, such as low cost, mechanical flexibility and large‐area fabrication, make them potentially useful for electronic applications such as flexible switching backplanes for video displays, radio frequency identifications and so on. A large amount of molecules were designed and synthesized for electron transporting (n‐type) and ambipolar organic semiconductors with improved performance and stability. In this review, we focus on the advances in performance and molecular design of n‐type and ambipolar semiconductors reported in the past few years.  相似文献   

16.
The existence of defects and traps in a transistor plays an adverse role on efficient charge transport. In response to this challenge, extensive research has been conducted on semiconductor crystalline materials in the past decades. However, the development of dielectric crystals for transistors is still in its infancy due to the lack of appropriate dielectric crystalline materials and, most importantly, the crystal morphology required by the gate dielectric layer, which is also crucial for the construction of high‐performance transistor as it can greatly improve the interfacial quality of carrier transport path. Here, a new type of dielectric crystal of hexagonal aluminum nitride (AlN) with the desired 2D morphology of combing thin thickness with large lateral dimension is synthesized. Such a suitable morphology in combination with the outstanding dielectric properties of AlN makes it promising as a gate dielectric for transistors. Furthermore, ultrathin 2,6‐diphenylanthracene molecular crystals with only a few molecular layers can be prepared on AlN crystal via van der Waals epitaxy. As a result, this all‐crystalline system incorporating dielectric and semiconductor crystals greatly enhances the overall performance of a transistor, indicating the importance of minimizing defects and preparing high‐quality semiconductor/dielectric interface in a transistor configuration.  相似文献   

17.
Multivalued logic (MVL) computing could provide bit density beyond that of Boolean logic. Unlike conventional transistors, heterojunction transistors (H‐TRs) exhibit negative transconductance (NTC) regions. Using the NTC characteristics of H‐TRs, ternary inverters have recently been demonstrated. However, they have shown incomplete inverter characteristics; the output voltage (VOUT) does not fully swing from VDD to GND. A new H‐TR device structure that consists of a dinaphtho[2,3‐b:2′,3′‐f]thieno[3,2‐b]thiophene (DNTT) layer stacked on a PTCDI‐C13 layer is presented. Due to the continuous DNTT layer from source to drain, the proposed device exhibits novel switching behavior: p‐type off/p‐type subthreshold region /NTC/ p‐type on. As a result, it has a very high on/off current ratio (≈105) and exhibits NTC behavior. It is also demonstrated that an array of 36 of these H‐TRs have 100% yield, a uniform on/off current ratio, and uniform NTC characteristics. Furthermore, the proposed ternary inverter exhibits full VDD‐to‐GND swing of VOUT with three distinct logic states. The proposed transistors and inverters exhibit hysteresis‐free operation due to the use of a hydrophobic gate dielectric and encapsulating layers. Based on this, the transient operation of a ternary inverter circuit is demonstrated for the first time.  相似文献   

18.
19.
Remarkable progress has been made in developing high performance organic field‐effect transistors (OFETs) and the mobility of OFETs has been approaching the values of polycrystalline silicon, meeting the requirements of various electronic applications from electronic papers to integrated circuits. In this review, the key points for development of high mobility OFETs are highlighted from aspects of molecular engineering, process engineering and interface engineering. The importance of other factors, such as impurities and testing conditions is also addressed. Finally, the current challenges in this field for practical applications of OFETs are further discussed.  相似文献   

20.
Organic semiconductors have been the subject of intensive academic and commercial interest over the past two decades, and successful commercial devices incorporating them are slowly beginning to enter the market. Much of the focus has been on the development of hole transporting, or p‐type, semiconductors that have seen a dramatic rise in performance over the last decade. Much less attention has been devoted to electron transporting, or so called n‐type, materials, and in this paper we focus upon recent developments in several classes of n‐type materials and the design guidelines used to develop them.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号