首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
对于自动化加工系统、刀具破损和异常磨损的有效实时监测是一个亟待解决的问题。本文用声发射信号监测加工中心上各种刀具的破损、折损,针对多种工序、多咱切削条件的复杂情况,进行了可变参数的模式识别算法的研究。基于这个算法,开发了一个综合刀具破损监测系统。这个系统针对自动化加工基本单元——加工中心的车、镗、铣多种工序,使得自动化加工系统的综合监测成为可能。实验验证表明,识别成功率大于90%。  相似文献   

2.
陶瓷刀具的磨损寿命可靠性   总被引:2,自引:1,他引:2  
在连续切削的条件下,Al2O3基陶瓷刀具的失效形式是以磨粒磨损为主的磨损失效,其磨损寿命服从对数正态分布。提出了利用 Monte Carlo方法同切削试验相结合的方法计算Al2O3基陶瓷刀具磨损寿命的经典可靠度与模糊可靠度。结果表明刀具材料的断裂韧度对两种可靠度的影响都较为明显,因而可以利用断裂韧度来估算磨损寿命可靠度。模糊可靠度的计算结果更为合理。  相似文献   

3.
In metal cutting, tool wear on the tool-chip and tool-workpiece interfaces (i.e. flank wear and crater wear) is strongly influenced by the cutting temperature, contact stresses, and relative sliding velocity at the interface. These process variables depend on tool and workpiece materials, tool geometry and coatings, cutting conditions, and use of coolant for the given application. Based on the predicted temperatures and stresses on the tool face from the finite element analysis (FEA) simulation, tool wear may be estimated with acceptable accuracy by incorporating an empirical wear model.

The overall objective of this study is to develop a methodology to predict the tool wear evolution and tool life in orthogonal cutting using FEM simulations. To approach this goal, the methodology is proposed with three different parts. In the first part, a tool wear model for the specified tool-workpiece pair is developed via a calibration set of tool wear cutting tests in conjunction with cutting simulations. In the second part, modifications are made to the commercial FEM code used to allow for tool wear calculation and tool geometry updating. The last part includes the validation of the developed methodology. This paper is mainly focused on the modifications made to the commercial FEM code in order to make reasonable tool wear estimates (the second part).  相似文献   

4.
In metal cutting, tool wear on the tool-chip and tool-workpiece interfaces (i.e. flank wear and crater wear) is strongly influenced by the cutting temperature, contact stresses, and relative sliding velocity at the interface. These process variables depend on tool and workpiece materials, tool geometry and coatings, cutting conditions, and use of coolant for the given application. Based on the predicted temperatures and stresses on the tool face from the finite element analysis (FEA) simulation, tool wear may be estimated with acceptable accuracy by incorporating an empirical wear model.

The overall objective of this study is to develop a methodology to predict the tool wear evolution and tool life in orthogonal cutting using FEM simulations. To approach this goal, the methodology is proposed with three different parts. In the first part, a tool wear model for the specified tool-workpiece pair is developed via a calibration set of tool wear cutting tests in conjunction with cutting simulations. In the second part, modifications are made to the commercial FEM code used to allow for tool wear calculation and tool geometry updating. The last part includes the validation of the developed methodology. This paper is mainly focused on the modifications made to the commercial FEM code in order to make reasonable tool wear estimates (the second part).  相似文献   

5.
《机械强度》2017,(6):1282-1287
为了提高刀具磨损状态监测准确度,提出基于人工蜂群-BP神经网络算法的刀具磨损状态监测方法。使用力传感器和振动传感器设计了磨损状态监测平台;使用匹配追踪算法对信号进行了去噪;提取了信号时域、频域、时频域的特征参数,使用核主成分分析法对特征参数进行了降维,确定了反应刀具磨损状态的15个特征参数;提出了人工蜂群-BP神经网络算法的刀具磨损状态识别方法,使用人工蜂群算法优化BP神经网络算法参数;经实验验证,传统BP神经网络识别准确率为78.75%,优化BP神经网络算法识别准确率为100%。  相似文献   

6.
FMS刀具切削状态实时在线监测智能系统   总被引:3,自引:0,他引:3  
论述了一个刀具切削状态实时在线监测智能识别系统的组成原理和构造,提出了一种新型流体声发射和电动机电流的综合传感新方案,建立了机床控制系统与智能监测系统的并行通信和发具切削状态识别的专家决策系统,根据不同的工况条件自动选择传感方式、监测模式和识别方法,形成了一套完整的在线监测智能识别系统。  相似文献   

7.
基于动态树理论的刀具磨损监测技术   总被引:3,自引:0,他引:3  
提出了基于动态树理论的刀具磨损监测方法,通过相关系数法提取传感器信号与刀具磨损最相关的几组特征,并采用具有局部记忆的B样条模糊神经网络建立刀具磨损量与声发射信号、切削力信号和振动信号特征之间的非线性映射关系,构造了任意加工条件下的刀具磨损监测系统,刀具磨损的识别结果由集成神经网络输出。试验结果表明,基于此方法构建的刀具磨损监测系统具有精度高、可靠度强、增殖性好和在线识别速度快等优点,值得工业推广。  相似文献   

8.
The development of a general 3D model for a corner-radiused, chamfered, edge-honed cutting worn tool is elaborated. The surface of the cutting tool was constructed using one angular scalar specifying location on the corner radius and leading/trailing edges and another non-dimensional scalar for specifying location on the relief, edge-hone, chamfer and tool-top. Then, for given geometric parameters and cutting conditions, the angular extremities of contact on the corner radius and leading/trailing edges was obtained and validated. The kinematic surface finish on the workpiece surface including the Brammertz and sideflow effects was then simulated in typical hard turning. The model was expanded to allow wiper edges and flank wear. A simplified crater wear model was adopted for continuous hard turning to allow virtual cross-sectioning. Accurate estimation of flank and crater wear volume was also enabled. The model results for the fresh tool agreed with well-known trends from 2D modeling. Preliminary results indicate that there exists a geometric basis for higher Ra and Rt for a worn tool. The Brammertz effect simulation, though not in agreement with the data of Knuefermann (2003 Knuefermann , M.M.W. ( 2003 ) Machining surfaces of optical quality by hard turning, School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire, UK . [Google Scholar]) corroborated the modification proposed therein.  相似文献   

9.
This paper presents a discriminant feature selection approach for hidden Markov model (HMM) modeling of micro-milling tool conditions. The approach is compared with other popular feature selection methods such as principal component analysis (PCA) and automatic relevance determination (ARD) according to their HMM classification rate. In tool condition monitoring (TCM), there are a lot of features that contain redundant information or less sensitive to tool state discrimination. These features are expected to be deleted for less computation and more robust modeling of tool conditions. Fisher's linear discriminant analysis (FDA) is modified for this purpose. The FDA is generally used for classification, and the features are mapped to another space and lose their physical meanings. In the modified discriminant feature selection, the features are selected in the original feature space by maximizing tool state separation and ranked by their separation ability between different tool states. Experimental results from both micro-milling of copper and steel under different working conditions indicate that the FDA is superior to both PCA and ARD for feature selection in HMM's classification. The reasons behind these differences are also discussed.  相似文献   

10.
为研究刀具磨损的微观机理,以单晶铝为例,采用分子动力学方法对纳米切削中刀具失效的原子级物理本质进行研究。模拟结果显示,随着切削深度的增加,能够形成化学键的配对原子数也急剧增加,导致刀具的扩散磨损加剧;晶体的各向异性对刀具扩散磨损影响很小,说明扩散磨损主要是一种化学过程;扩散磨损生成的积屑瘤代替刀具进行切削,使得超精密加工的表面质量恶化,切削区域温度上升,进一步加剧扩散磨损过程。  相似文献   

11.
以小波分析理论为基础,提出了以对数熵理论确定最佳小波包分解树结构的方法,提出了基于声发射信号最佳小波基最佳小波分量频段能量的声发射信号小波特征,开发了基于最佳小波基小波特征的神经网络刀具磨损状态在线监测系统,实验结果表明,该系统具有较高的监测精度,能满足工业现场对刀具磨损状态实时在线监测的要求.  相似文献   

12.
A type of Si3N4-based nanocomposites ceramic cutting tool material was prepared by the addition of nano-scale Si3N4W whisker and nano-scale TiN particle. Cutting performance of the Si3N4/Si3N4W/TiN nanocomposite ceramic tool in machining of cast iron was investigated in comparison with a commercial sialon ceramic tool, and the tool wear mechanism was studied. The two types of cutting tools have similar cutting performance at relatively low cutting parameters, while Si3N4/Si3N4W/TiN nanocomposite tool exhibits a better wear resistance than sialon tool at the relatively high cutting parameters. The wear of sialon ceramic cutting tool is dominated by the plastic deformation, abrasive action, microcracking, pullout of grains and chemical action at the higher cutting parameters. The higher mechanical properties, and the refined matrix grains, intragranular TiN grains and dislocation in the microstructure improve the resistances to plastic deformation, microcracking, and pullout of grains for Si3N4/Si3N4W/TiN nanocomposite ceramic cutting tool. The wear of Si3N4/Si3N4W/TiN nanocomposite ceramic cutting tool is dominated by the abrasive and chemical actions at the higher cutting parameters.  相似文献   

13.
为研究氮硅涂层陶瓷刀具切削性能及磨损机理,采用物理气相沉积(PVD)工艺分别在氮化硅刀具表面沉积TiAlN和CrAlN涂层,利用切削灰铸铁HT200实验对刀具寿命和磨损机理进行了系统研究,探讨不同切削深度、进给率、切削速度下刀具的磨损情况.着重关注陶瓷涂层车削铸铁的最佳切削速度,分析了不同切削速度下刀具的切削性能.结果...  相似文献   

14.
从机床能量传输数学模型出发,首次建立了机床功率信息传感型监控系统(简称机床功率监控系统)的数学模型,提出了些模型在研究机床功率信息动态响应特性,提示功率住处随切削负载率和在外界干扰信息作用下的变化规律,识别刀具磨损、破损状态,诊断机械加工故障,测试机械加工过程中的某些机械量或电量等方面有着多种功能和用途,并列举了应用此模型提示机床功率监控系统中功率信息的迟滞响应特性的实例。  相似文献   

15.
张军  孙宝元  钱敏 《机械工程学报》2002,38(Z1):151-154
在阐明切削力测量监控的应用和意义基础上,讨论了基于切削力测试监控系统的构成,指出典型加工方式的测试系统的重要环节,对所搭建的以压电效应作为传感方式的测力仪,进行了性能指标分析并阐述了达到目标的方法,并以优化的观点分析了对整个系统中各项指标的合理要求,从实用的角度提出了解决问题的方法.介绍了软件系统的功能以及试验验证方法.  相似文献   

16.
建立正交切削加工过程中的传热数学模型,基于Lagrange描述法和有限元法对正交切削的温度场进行数值计算,应用Deform有限元分析软件对不同加工材料、不同切削前角以及不同切削参数下的切削过程进行仿真,得出影响温度场的变化规律.研究结果表明,切削过程的热量主要由材料的塑性变形和切屑与刀具的摩擦产生的,在不改变材料属性的前提下,通过调整切削参数和刀具的形状来降低切削过程的温度,并给出具体刀具前角大小的温度影响分布曲线,为切削加工过程的优化提供参考依据.  相似文献   

17.
This paper examines the performance of AlN/TiN coated carbide tool during milling of STAVAX® (modified AISI 420 stainless steel) at a low speed of 50 m/min under conventional flood and mist lubrication. Abrasion, chipping, fracture resulting in the formation of crater and catastrophic failure are the wear mechanisms encountered during machining under flood lubrication. The flank wear, and the likeliness of the cutting tool to fracture, chip and fail prematurely increased with an increase in the hardness of the workpiece and a reduction in the helix angle of the tool. Small quantity of mineral oil sprayed in mist form was effective in reducing the flank wear and severity of abrasion wear, and preventing the formation of crater and the occurrence of catastrophic failure. In milling 35 and 55 HRC-STAVAX® using a feed rate of 0.4 mm/tooth and a depth of cut of 0.2 mm under mist lubrication, the cutting edge of the 25° and 40° helix angle tools only suffered small-scale edge chipping and abrasive wear throughout the entire duration of testing. The influence of the ductility of the workpiece on the surface finish and the effectiveness of mist lubricant in improving the surface finish are also discussed.  相似文献   

18.
Determining the temperature field in metal cutting when the tool flank is progressively worn requires the knowledge of the forces due to tool flank wear and that due to chip formation. In the past, these forces have been computed from data experimentally measured with a dynamometer, under the assumption that the chip formation configuration remained unaltered when the tool flank is progressively worn. This approach has been used in the literature even though there has been evidence that it is not correct. The error introduced by this doubtful assumption in computing the maximum surface temperature in the work-piece can be significant.

Of late there has been considerable interest in employing hard turning as the final finishing process in place of grinding and superfinishing. Consequently, the ability to accurately predict the maximum surface temperature and its distribution in the workpiece is now most desirable, for avoiding thermal damage to the machined surface. This paper discusses a new method based on the thickness of the microstructural change in chips to decouple the tool-flank forces for predicting the maximum surface temperature and its distribution in the workpiece.  相似文献   

19.
Titanium alloy Ti6A14V has been widely used in many engineering fields due to its attractive specific strength and corrosion resistance. A deep understanding of the material's machinability is of primary importance. This article investigates the serrated chip formation mechanism of Ti6Al4V alloy under high-speed cutting by finite element analysis. The effect of the cutting conditions on the serrated chip formation is analyzed comprehensively. The study found that when the initial chip thickness becomes small or when the rake angle becomes large, the size of sawtooth decreases and the number of sawtooth increases. The serrated chip morphology is more sensitive to the initial chip thickness. The severe fluctuation of cutting forces is caused by the formation of sawtooth in chipping. To minimize the serrated chipping in high-speed machining, the initial chip thickness is the most important factor to consider.  相似文献   

20.
金属切削刀具广泛地应用于机械制造业中,随着加工对象和生产条件的不同,刀具的切削角度更是千变万化。然而到目前为止,各种刀具的切削角度竟没有一些通式来表示其变化规律。本文根据切削速度方向以及刀刃和刀具表面法线方向,推导了刀具切削角度的一些通式,利用这种通式可以方便地确定任何复杂刀具的切削角度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号