首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
2.
Nanoparticle (NP) superlattices have attracted increasing attention due to their unique physicochemical properties. However, key questions persist regarding the correlation between short‐ and long‐range driving forces for nanoparticle assembly and resultant capability to predict the transient and final superlattice structure. Here the self‐assembly of Ag NPs in aqueous solutions is investigated by employing in situ liquid cell transmission electron microscopy, combined with atomic force microscopy‐based force measurements, and theoretical calculations. Despite the NPs exhibiting instantaneous Brownian motion, it is found that the dynamic behavior of NPs is correlated with the van der Waals force, sometimes unexpectedly over relatively large particle separations. After the NPs assemble into clusters, a delicate balance between the hydration and van der Waals forces results in a distinct distribution of particle separation, which is ascribed to layers of hydrated ions adsorbed on the NP surface. The study demonstrates pivotal roles of the complicated correlation between interparticle forces; potentially enabling the control of particle separation, which is critical for tailoring the properties of NP superlattices.  相似文献   

3.
4.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号