共查询到15条相似文献,搜索用时 62 毫秒
1.
2.
针对行波法测距精度受波速、行波波头标定的精度以及噪声的影响,提出一种基于小波阈值去噪和CEEMD-HT结合的混合三端直流输电线路测距方法。首先利用小波阈值去噪对故障信号滤噪,然后对滤噪后的信号使用互补集合经验模态分解和希尔伯特变换标定初始波头的到达时间。再根据故障行波到达测量端时间比值识别故障支路。最后考虑到行波波速难以精确确定,基于已知线路长度和初始波头到达时间,提出一种不受波速影响的测距方法。仿真结果表明,所提方法能够有效标定波头,且测距结果不受波速、故障距离、故障类型、过渡电阻及噪声的影响。与利用波速计算的双端法、HHT及小波包测距算法相比,该方法的测距误差更小。 相似文献
3.
为克服经验模态分解(EMD)去噪方法存在的模态混叠以及噪声分量与信号分量区分困难问题,本文提出了一种基于二次互补集合经验模态分解(CEEMD)与时域特征分析的去噪方法。该方法利用CEEMD来克服模态混叠问题,同时基于对CEEMD本征模态函数(IMF)的时域特征分析来确定噪声主导IMF分量与信号主导IMF分量的分界点,据此区分噪声分量与信号分量,并对分界点相邻两侧的噪声主导IMF分量与信号主导IMF分量进行二次CEEMD分解,在保留更多有用信号的同时进一步滤除剩余噪声。对含冲击噪声干扰的实际机载平台数据的去噪实验结果表明,新方法通过对噪声分量与信号分量的有效分离,可以更好地抑制噪声干扰,明显提升信噪比。 相似文献
4.
为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重构算法,重构后的信号最大程度地保持原有时域特征,也能对降雹声信号去噪处理。其次设计了一种多域特征融合1D-CNN模型,将重构后的原始数据、时域特征和频域特征分别作为1D-CNN的输入,在中间层进行特征拼接,最后输出分类器,结果显示本文设计的多域特征融合1D-CNN对降雹量级的识别率高达99.58%,相比于原始数据与传统1D-CNN模型识别率提高了8.75%。 相似文献
5.
针对目前变分模态分解法在心电信号降噪时存在模态分量难以取舍的问题,提出了一种改进的变分模态分解方法。首先对含噪心电信号进行变分模态分解,通过各模态分量的中心频率和模态分量与原始心电信号的互相关来确定噪声占优的模态分量与信号占优的模态分量。然后选取中心频率处于医学心跳频率范围的模态分量来提取心跳频率对应的采样点数,根据心跳频率对噪声占优的模态分量和信号占优的模态分量分别进行平滑滤波。最后使用处理过的模态分量重构心电信号,完成基线漂移和肌电噪声的去除。实验结果表明该方法的去噪效果优于小波阈值法、变分模态分解法及两者相结合的方法。 相似文献
6.
超宽带雷达具有高分辨率,穿透能力强,低功耗等优势,工作时人体无需接触任何电极或传感器,可以穿透衣服、废墟等非金属介质在较远的距离内检测人体生命体征信息,在非接触式生命体征检测方面具有很重要的应用价值。由于人类心跳信号容易被呼吸谐波和其他噪声干扰,为了准确提取人体生命体征信号,提出一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)结合的生命体征信号去噪方法。先通过超宽带雷达测量待测者的生命体征,获取人体所在空间位置提取出体表微动信号,对体表振动信号进行补偿与欠采样处理;利用ICEEMDAN-WPD的阈值去噪方法对微动信号进行模态分解,选取合适的模态分量去噪并进行重构,获取人体心跳微动信号的时频特征。实验结果表明,该算法相较于传统的去噪算法将相关系数提高到了0.940 5,信噪比提高到了9.093 8 dB,保留更多的生命体征信息的同时拥有更高的信噪比,可有效应用于生命体征检测领域。 相似文献
7.
高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判。提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensembleempiricalmodedecomposition,EEMD)高压并联电抗器声信号去噪方法。首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组。其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsicmodefunction,IMF)的筛选截止条件并进行集合经验模态分解。然后利用相关系数法提取有效的IMF分量。最后对有效IMF分量叠加重构,得到去噪声信号。模拟实验和实测结果表明,该方法具有较好的去噪效果。通过与传统经验模态分解法(empiricalmodedecomposition,EMD)、标准EEMD去噪技术的比较,验证了该方法在实际应用过程中的有效性和实用性。 相似文献
8.
在采集爆炸冲击波超压信号时,由于监测的高温环境、压力传感器的误差以及磁场干扰,爆炸冲击波超压信号中混入了大量的噪声。为了准确地获取超压信号的特征,设计了一种基于融合完全集成经验模态分解与自适应噪声(CEEMDAN)与SG(Savitzky-Golay)去噪算法。首先使用CEEMDAN对爆炸冲击波超压信号进行分解,其次计算每个本征模态函数(IMF)的能量贡献率,利用SG滤波算法将能量贡献率低于0.1%且大于0.05%的IMF进行去噪处理。实验结果表明,CEEMDAN-SG与经验模态分解(EMD)、改进的集合经验模态分解(EEMD)、CEEMDAN以及CEEMDAN-小波阈值去噪所比较,信噪比分别提高了0.85、0.71、3.09、0.25 dB,且均方误差最小。CEEMDAN-SG与CEEMDAN-小波阈值去噪在去除噪声效果较理想,且CEEMDAN-SG在0.16 s时与原信号相似度最高。该算法不仅能有效去除噪声,而且还可以保留原始信号的特征,适用于爆炸冲击波超压信号的去噪处理。 相似文献
9.
对锅炉受热面积灰程度的有效预测,可为锅炉提升生产效率和故障预警提供重要依据。 采用清洁因子来评估受热面的
灰污沉积状况,针对其序列非线性、非平稳性的特点,提出一种基于互补集合经验模态分解与时间卷积网络的受热面积灰预测
方法。 首先,通过互补集合经验模态分解将经过小波阈值去噪处理后的原始序列分解为一组子序列分量;然后,针对不同子序
列分别构建基于时间卷积网络的时序预测模型,并优化网络超参数提升预测准确性;最后,将各 IMF 分量的预测结果叠加得出
清洁因子的预测数值。 由实验结果可得,相较于其他两种模型,预测精度分别提高 62. 1%和 57. 1%,CEEMD-TCN 模型对受热
面积灰状况预测精度最高,验证了该模型的准确性和可靠性。 相似文献
10.
针对现有时频分析方法处理非线性、非稳态信号自适应性的不足,提出了一种自适应互补集总经验模态分解(ACEEMD)方法。该方法通过对加噪辅助分解方法噪声准则的研究,引入相关均方根误差与信噪比两个参数作为加噪评价指标,自适应确定最优加噪幅值和集总分解次数。且加入的噪声以正负成对的形式加到目标信号中,克服了原始分解方法存在的模态混叠问题、端点效应以及残余噪声大的缺点。最后将改进的方法与Hilbert变换相结合运用在电能质量扰动检测中,通过仿真实验验证所提方法既可以有效提取扰动的频率、幅值等特征参数,也可以准确定位扰动的时间,为电能质量检测与分析提供了一种新思路。 相似文献
11.
为消除基于互补集合经验模态分解(Complementary Ensemble Empirical Mode Decomposition,CEEMD)的谐波检测法易受到迭代次数与辅助白噪声的干扰而产生虚假分量与模态混叠等问题,以及CEEMD方法在检测噪声背景下的谐波信号精度不高的缺陷,提出一种基于排列熵(Permutation Entropy,PE)算法与CEEMD相结合的PE-CEEMD谐波检测方法。首先对谐波信号进行互补集合经验模态分解,得到若干频率由高到低排列的固有模态函数(Intrinsic Mode-Function,IMF),利用排列熵算法快速选定随机性较大的噪声分量进行剔除,对剩余信号再进行CEEMD分解。仿真实验数据表明,相较于CEEMD方法,PE-CEEMD方法能够较好地克服模态混叠与虚假分量等问题,并且针对复杂谐波信号的各次谐波频率成分与幅值的检测精度分别提高了4.424%与9.3%。 相似文献
12.
为提高在噪声环境下电能质量扰动检测定位的准确性,提出基于改进小波阈值函数和完备总体经验模态分解(CEEMD)的电能质量扰动检测算法。在采用CEEMD处理电能质量扰动信号的基础上,通过排列熵计算各固有模态函数的随机噪声强度,利用小波改进阈值函数对噪声强度高于排列熵值的分量降噪,并对降噪后分量进行Hilbert-Huang变换,求取定位扰动起止点以及频率等参数。将该算法与CEEMD舍弃高频分量和小波阈值函数降噪方法的对比分析,结果表明算法不仅具有较强的抗噪性,而且能有效保留高频信息不被滤除。以PSCAD/EMTC双馈式风力发电系统中的单相短路和两相短路为例,仿真验证了所提算法的有效性,最后搭建了基于PXI和Lab VIEW平台电能质量扰动检测平台,为应用于工程实践中奠定基础。 相似文献
13.
在进行工业超声无损检测的过程中,由于环境、仪器等原因产生噪声,对后续缺陷分析等工作形成一定干扰,不利于完成后期数据分析。因此为了使信号的信噪比有所提高,提出了一种改进的经验模态分解阈值降噪算法。同时对比小波软阈值降噪法与经验模态分解清除重复间隔阈值的方法,在MATLAB仿真软件中建立超声回波数学模型并进行算法验证。实验结果表明,经验模态分解降噪方法优于小波阈值降噪,改进后的经验模态分解阈值降噪方法在信噪比、均方误差、光滑度3个方面均有所提高,达到了较好的降噪效果。 相似文献
14.
针对脉搏信号非线性、非平稳,且难以去噪的问题,提出了一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)相结合的联合去噪方法,对采集的脉搏信号进行去噪处理。首先对噪声信号进行ICEEMDAN模态分解,产生一系列的固有模态函数(IMF),再将这些IMF分量分别与原信号进行相关系数的计算,比较相关系数的值,然后进行信号的重组,最后对重组后的信号进行小波包分解,提取得到降噪后的脉搏信号。利用仿真数据、实际采集的脉搏信号进行实验分析,将该方法与集合经验模态分解(EEMD)进行了对比,并比较了这两种方法的信噪比(SNR)和均方根误差(RMSE)。实验结果表明:基于ICEEMDAN-WPD的联合去噪方法能更有效地去除噪声,并更好地保留脉搏信号的特征。 相似文献
15.
针对在高速铁路复杂电磁环境中应答器上行链路(balise uplink, BU)信号传输受扰的问题,提出了一种基于自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与小波包自适应阈值的联合降噪方法。首先,采用CEEMDAN算法将模拟BU信号分解为12个模态分量,根据相关系数判断分量为相关分量或无关分量;然后,相关分量经小波包降噪处理后重构为降噪后的BU信号;最后,选用信噪比(signal-noise ratio, SNR)和均方根误差(root mean square error, RMSE)作为评价指标,将该方法与目前广泛采用的6种降噪方法进行对比,信噪比提高了0.486 1~6.144 dB,均方根误差降低了0.054 9~11.091。为检验该方法的实际应用效果,采用联合降噪方法对实测BU信号进行降噪处理。仿真验证和实验验证的结果表明,采用联合降噪方法降噪后的BU信号不仅噪声分量得到了有效去除,而且信号特征保存完好,证明该方法能够应用于解决实际BU信... 相似文献