首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
心电图对诊断心律失常具有重要意义,但心电信号易受各种噪声的干扰,噪声会改变心电信号的形态,影响心律失常的准确诊断.提出了一种改进经验小波变换的心电信号去噪算法,根据心电信号的频域特点,改进了经验小波变换中频谱的划分方法,并通过计算过零率和相关系数去除噪声相关的经验模态函数,使用小波阈值法去除剩余分量的残留噪声.实验结果...  相似文献   

2.
针对行波法测距精度受波速、行波波头标定的精度以及噪声的影响,提出一种基于小波阈值去噪和CEEMD-HT结合的混合三端直流输电线路测距方法。首先利用小波阈值去噪对故障信号滤噪,然后对滤噪后的信号使用互补集合经验模态分解和希尔伯特变换标定初始波头的到达时间。再根据故障行波到达测量端时间比值识别故障支路。最后考虑到行波波速难以精确确定,基于已知线路长度和初始波头到达时间,提出一种不受波速影响的测距方法。仿真结果表明,所提方法能够有效标定波头,且测距结果不受波速、故障距离、故障类型、过渡电阻及噪声的影响。与利用波速计算的双端法、HHT及小波包测距算法相比,该方法的测距误差更小。  相似文献   

3.
为克服经验模态分解(EMD)去噪方法存在的模态混叠以及噪声分量与信号分量区分困难问题,本文提出了一种基于二次互补集合经验模态分解(CEEMD)与时域特征分析的去噪方法。该方法利用CEEMD来克服模态混叠问题,同时基于对CEEMD本征模态函数(IMF)的时域特征分析来确定噪声主导IMF分量与信号主导IMF分量的分界点,据此区分噪声分量与信号分量,并对分界点相邻两侧的噪声主导IMF分量与信号主导IMF分量进行二次CEEMD分解,在保留更多有用信号的同时进一步滤除剩余噪声。对含冲击噪声干扰的实际机载平台数据的去噪实验结果表明,新方法通过对噪声分量与信号分量的有效分离,可以更好地抑制噪声干扰,明显提升信噪比。  相似文献   

4.
为便于分析冰雹对社会生产造成的灾害影响,需要对降雹量级进行分类统计,对降雹量级进行定量分析,不仅可以为灾害评估提供依据,还可以对气象预报、虚报现象做出反馈。本文针对降雹声信号提出了一种改进的互补集合经验模态分解(CEEMD)重构算法,重构后的信号最大程度地保持原有时域特征,也能对降雹声信号去噪处理。其次设计了一种多域特征融合1D-CNN模型,将重构后的原始数据、时域特征和频域特征分别作为1D-CNN的输入,在中间层进行特征拼接,最后输出分类器,结果显示本文设计的多域特征融合1D-CNN对降雹量级的识别率高达99.58%,相比于原始数据与传统1D-CNN模型识别率提高了8.75%。  相似文献   

5.
针对目前变分模态分解法在心电信号降噪时存在模态分量难以取舍的问题,提出了一种改进的变分模态分解方法.首先对含噪心电信号进行变分模态分解,通过各模态分量的中心频率和模态分量与原始心电信号的互相关来确定噪声占优的模态分量与信号占优的模态分量.然后选取中心频率处于医学心跳频率范围的模态分量来提取心跳频率对应的采样点数,根据心跳频率对噪声占优的模态分量和信号占优的模态分量分别进行平滑滤波.最后使用处理过的模态分量重构心电信号,完成基线漂移和肌电噪声的去除.实验结果表明该方法的去噪效果优于小波阈值法、变分模态分解法及两者相结合的方法.  相似文献   

6.
高压并联电抗器运行过程中产生的声信号是准确判定电抗器运行状态的重要依据,在对电抗器声信号现场采集时易受到多种外界噪声的干扰,测量仪器无法有效进行预处理,导致对电抗器运行状态的评估发生误判。提出了一种基于多传感器融合及最小下限频率截止的改进集合经验模态分解(ensembleempiricalmodedecomposition,EEMD)高压并联电抗器声信号去噪方法。首先,利用一致性数据融合算法对各声纹传感器进行关联和甄别,剔除失效传感器,确定有效传感器组。其次,选取有效传感器组中的最小下限频率作为固有模态函数(intrinsicmodefunction,IMF)的筛选截止条件并进行集合经验模态分解。然后利用相关系数法提取有效的IMF分量。最后对有效IMF分量叠加重构,得到去噪声信号。模拟实验和实测结果表明,该方法具有较好的去噪效果。通过与传统经验模态分解法(empiricalmodedecomposition,EMD)、标准EEMD去噪技术的比较,验证了该方法在实际应用过程中的有效性和实用性。  相似文献   

7.
超宽带雷达具有高分辨率,穿透能力强,低功耗等优势,工作时人体无需接触任何电极或传感器,可以穿透衣服、废墟等非金属介质在较远的距离内检测人体生命体征信息,在非接触式生命体征检测方面具有很重要的应用价值.由于人类心跳信号容易被呼吸谐波和其他噪声干扰,为了准确提取人体生命体征信号,提出一种基于改进的自适应噪声集合经验模态分解(ICEEMDAN)与小波包分解(WPD)结合的生命体征信号去噪方法.先通过超宽带雷达测量待测者的生命体征,获取人体所在空间位置提取出体表微动信号,对体表振动信号进行补偿与欠采样处理;利用ICEEMDAN-WPD的阈值去噪方法对微动信号进行模态分解,选取合适的模态分量去噪并进行重构,获取人体心跳微动信号的时频特征.实验结果表明,该算法相较于传统的去噪算法将相关系数提高到了0.9405,信噪比提高到了9.0938 dB,保留更多的生命体征信息的同时拥有更高的信噪比,可有效应用于生命体征检测领域.  相似文献   

8.
在采集爆炸冲击波超压信号时,由于监测的高温环境、压力传感器的误差以及磁场干扰,爆炸冲击波超压信号中混入了大量的噪声。为了准确地获取超压信号的特征,设计了一种基于融合完全集成经验模态分解与自适应噪声(CEEMDAN)与SG(Savitzky-Golay)去噪算法。首先使用CEEMDAN对爆炸冲击波超压信号进行分解,其次计算每个本征模态函数(IMF)的能量贡献率,利用SG滤波算法将能量贡献率低于0.1%且大于0.05%的IMF进行去噪处理。实验结果表明,CEEMDAN-SG与经验模态分解(EMD)、改进的集合经验模态分解(EEMD)、CEEMDAN以及CEEMDAN-小波阈值去噪所比较,信噪比分别提高了0.85、0.71、3.09、0.25 dB,且均方误差最小。CEEMDAN-SG与CEEMDAN-小波阈值去噪在去除噪声效果较理想,且CEEMDAN-SG在0.16 s时与原信号相似度最高。该算法不仅能有效去除噪声,而且还可以保留原始信号的特征,适用于爆炸冲击波超压信号的去噪处理。  相似文献   

9.
对锅炉受热面积灰程度的有效预测,可为锅炉提升生产效率和故障预警提供重要依据。 采用清洁因子来评估受热面的灰污沉积状况,针对其序列非线性、非平稳性的特点,提出一种基于互补集合经验模态分解与时间卷积网络的受热面积灰预测方法。 首先,通过互补集合经验模态分解将经过小波阈值去噪处理后的原始序列分解为一组子序列分量;然后,针对不同子序列分别构建基于时间卷积网络的时序预测模型,并优化网络超参数提升预测准确性;最后,将各 IMF 分量的预测结果叠加得出清洁因子的预测数值。 由实验结果可得,相较于其他两种模型,预测精度分别提高 62. 1%和 57. 1%,CEEMD-TCN 模型对受热面积灰状况预测精度最高,验证了该模型的准确性和可靠性。  相似文献   

10.
为了改善电能质量扰动信号的去噪效果,实现扰动信号的检测与准确定位,提出了一种基于集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)自适应阈值的电能质量扰动信号去噪方法。首先利用集合经验模态分解将含噪的扰动信号分解成一些相互独立的固有模态函数(Intrinsic Mode Function,IMF)分量,然后对所得的IMF进行自适应阈值去噪,从而抑制噪声干扰。采用希尔伯特黄变换(HHT)提取去噪后扰动信号的起止时刻、瞬时频率和幅值信息。相比于小波去噪的启发式阈值、自适应阈值、固定阈值、极大极小阈值等方法,该方法在去噪的同时减少了信息损失,信噪比SNR和均方误差MSE均有明显提高。仿真结果验证了该方法在电能质量扰动检测与定位中的有效性和可行性。  相似文献   

11.
王磊  刘国龙  杨磊 《微电机》2024,(2):56-62
由于风机轴承易发生故障且振动信号分析对于故障诊断极其有效,提出了基于自适应噪声完备集合经验模态分解(Complete Ensemble EmpiricalMode Decomposition with Adaptive Noise,CEEMDAN)和变分模态分解(Variational Modal Decomposition,VMD)相结合的信号处理方法。首先,使用CEEMDAN将采集到的振动信号分解成若干本征模态函数(Intrinsic Mode Function,IMF)分量,并使用能量加权合成峭度指标筛选故障特征明显的IMF分量,进行信号重构;之后,利用VMD将新的信号进行再分解,将VMD分解后每个IMF的能量比与基于包络熵和包络谱峭度组合的复合指标筛选出的最优IMF分量构建能量熵、样本熵、近似熵进行特征融合;最后,将融合特征矩阵输入到蛇优化算法(SO)优化支持向量机(SVM)进行识别和分类,实现多故障模式识别。通过仿真实验表明:此方法对于检测轴承十种劣化状态,诊断正确率达到98%。为风机轴承故障诊断提供了一种新的思路。  相似文献   

12.
经验模态分解(EMD)作为希尔伯特-黄变换(HHT)的重要组成部分,为了克服其在谐波检测中出现的模态混叠、端点效应问题,提出采用自适应噪声完备集合经验模态分解(CEEMDAN)和希尔伯特变换(HT)相结合的谐波检测新方法。文章首先在理论上对比分析了EMD、EEMD以及CEEMDAN算法,研究CEEMDAN算法的特性。再用CEEMDAN算法对原始信号进行分解,得到固有模态函数(IMF)。最后用HT算法对每阶IMF分量进行分析,检测到谐波中包含的瞬时幅频信息。算例仿真结果表明,相对于HHT算法对信号的处理能力,文中提出的方法在谐波检测中有效地克服了EMD算法的弊端,提高了信号分解精度。  相似文献   

13.
针对在高速铁路复杂电磁环境中应答器上行链路(balise uplink, BU)信号传输受扰的问题,提出了一种基于自适应白噪声完备经验模态分解(complete ensemble empirical mode decomposition with adaptive noise, CEEMDAN)与小波包自适应阈值的联合降噪方法。首先,采用CEEMDAN算法将模拟BU信号分解为12个模态分量,根据相关系数判断分量为相关分量或无关分量;然后,相关分量经小波包降噪处理后重构为降噪后的BU信号;最后,选用信噪比(signal-noise ratio, SNR)和均方根误差(root mean square error, RMSE)作为评价指标,将该方法与目前广泛采用的6种降噪方法进行对比,信噪比提高了0.486 1~6.144 dB,均方根误差降低了0.054 9~11.091。为检验该方法的实际应用效果,采用联合降噪方法对实测BU信号进行降噪处理。仿真验证和实验验证的结果表明,采用联合降噪方法降噪后的BU信号不仅噪声分量得到了有效去除,而且信号特征保存完好,证明该方法能够应用于解决实际BU信...  相似文献   

14.
经验模态分解(empirical mode decomposition,EMD)降低噪声的同时也削弱信号能量,并会产生虚假信号,导致信号检测存在缺陷,针对这一问题,提出Levy噪声环境下经验模态分解随机共振检测方法。通过将含噪信号进行EMD分解,对分解后信号进行叠加取平均二次采样等处理方法,使其满足随机共振要求,利用自适应算法优化系统参数,进而使处理后信号能够在双稳系统中产生随机共振,达到精确检测的目的。理论分析及实验证明在Levy噪声下,此方法能实现同一特征指数下单频信号与多频信号检测,实验表明在单频信号信噪比为-28 dB情况下能有14 dB的提高,特征指数为1.8下多频信号5 Hz频谱幅值从311.8增加到724,10 Hz频谱幅值由138.9增加到143.2。此方法对在复杂噪声环境中降低剩余噪声能量同时,提高信号能量,减少虚假信号,相对于仅仅进行EMD分解无法判断信号成分,能更好的达到检测效果。  相似文献   

15.
针对滚动轴承发生故障时的冲击信号易被噪声淹没和其非平稳的特性,以及传统使用自适应白噪声平均总体经验模态分解(CEEMDAN)时固有模态函数(IMFs)中的有效信息不能被充分利用等问题,提出了一种基于加权自适应白噪声平均总体经验模态分解(WACEEMDAN)和调制信号双谱(MSB)的滚动轴承故障特征提取方法.首先,使用C...  相似文献   

16.
针对电力负荷序列不平稳、随机性强,直接输入模型会导致拟合效果差、预测精度低等问题,本文提出了一种基于添加互补白噪声的互补集合经验模态分解(complementary ensemble empirical mode decomposition, CEEMD)以及门控循环单元神经网络(gated recurrent unit neural network, GRU)融合的预测方法。首先,针对传统经验模态分解(empirical mode decomposition, EMD)分解方法处理干扰信号大的序列时,存在的模态混叠问题,提出了CEEMD分解方法,加入互补白噪声,将原始序列分解成不同尺度的子序列,随后使用GRU神经网络,并优化网络超参数,从而获得最好的预测结果。通过实验证明,该方法重构误差小,预测效果好。  相似文献   

17.
为了有效实现单路心音混合信号的盲分离,本文提出了一种基于EMD分解和独立成分函数的单路含噪心音信号盲源分离的方法。首先讨论了单路混合信号的分离模型,含噪信号预处理的方法,以及如何利用EMD变换进行窄带分层和获取独立成分函数的技术;然后通过独立成分函数作为基函数对单路含噪心音信号进行分解,使单路心音信号由一维向量转变为多维向量,从而实现心音信号的盲源分离;最后通过实际的心音分离实验,验证了本方法的实用性,其分离结果的相似度达到0.9792。  相似文献   

18.
针对振动信号判别断路器机械故障过程受干扰影响的特征提取问题,提出一种自适应白噪声完整集合经验模态分解(CEEMDAN)与样本熵相结合的故障特征提取方法。通过CEEMDAN提取若干反映断路器操动过程机械状态信息的本征模态函数(IMF)分量,依据各IMF相关系数与能量分布,将前7阶IMF分量进行小波包软阈值去噪,计算其样本熵作为特征量,最后采用基于免疫浓度思想的烟花算法(FWA)优化支持向量机(SVM)分类器,对断路器不同运行状态进行分类识别。实验结果表明:基于CEEMDAN样本熵特征对于信号干扰不敏感,FWA-SVM诊断方法对于高压断路器分闸操动过程故障辨识效果良好。  相似文献   

19.
抽水蓄能机组大波动过渡过程中水压脉动信号包含大量的毛刺,表现出瞬时大幅跳变的特点,严重影响水压脉动最值的分析选择。针对该问题,本文提出一种频域分段-时域反演法,首先将时域水压脉动信号进行傅里叶变换以获取水压脉动信号的频谱特征,在频域根据设置的截止频率对水压脉动信号滤波,经快速傅里叶逆变换反演出滤除指定频段后的水压脉动信号。通过在频域滑动截止频率,提取水压脉动极值-滑动截止频率关系曲线,分析不同频段对水压脉动最值的敏感性,揭示滤波频率对水压脉动信号最值的影响。该方法应用于工程实际抽水蓄能机组水压脉动信号分析,为水压脉动最值的确定提供了有力论证。  相似文献   

20.
针对桥梁应变信号的特点,提出了一种基于经验模态分解法的降噪方法。当信号中噪声分布在某些特定频段且与信号混叠时,现有的降噪方法如小波阈值法无法很好地对其进行处理。本文在对桥梁应变信号进行经验模态分解的基础上,具体分析分解后的本征模函数分量,对含噪较大的本征模函数分量进行特定的阈值滤波处理,并将处理后的本征模函数分量与含噪较小的本征模函数分量以及残余分量进行信号重构,得到降噪后的桥梁应变信号。将此方法用于实际测得的数据,实验结果表明,其能在保留原始信号特征的前提下,消除桥梁应变信号中的噪声,从而达到降噪的目的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号