首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
为强化印刷电路板式换热器(PCHE)中超临界LNG强化换热特性,基于处理表面强化换热技术,提出一种正弦型凹穴矩阵微通道模型,并对超临界LNG在其内部流动换热特性进行数值模拟研究。研究了不同凹穴结构阵列微通道流动换热性能和入口质量流量、正弦型凹穴高度和重力对范宁摩阻系数、对流传热系数及综合换热评价因子的影响,最后引入壁面平均涡强对正弦型凹穴局部流动与换热机理分析。结果表明:正弦型凹穴能够强化超临界LNG换热特性,换热效果与入口质量流速成正比,且环向横置阵列优于环向竖置阵列;凹穴高度增加,微通道中流动传热系数也随之增大;通过对比施加不同方向的重力对通道的流动换热影响,施加逆流方向的重力可以强化正弦型凹穴微通道的流动换热特性;结合综合换热评价因子分析,正弦型凹穴能够显著强化通道流动换热性能,并且凹穴高度0.2 mm阵列微通道换热性能最佳;通过壁面平均涡强分析正弦型凹穴通道局部流动换热机理,其能够产生强力漩涡使边界层变薄,对主流区域恶化程度低,能够加速热量由壁面向主流区传递,实现微通道表面强化换热。  相似文献   

2.
印刷电路板换热器(Printed Circuit Heat Exchanger,PCHE)是一种新型微通道换热器,其换热的高效性和集成性非常适合用于LNG接收站的中间流体换热器(IFV)中。对超临界甲烷在PCHE中的对流换热进行数值模拟,研究了质量流量、入口压力、热通量及通道形状对微通道内甲烷换热系数的影响。结果表明,表面换热系数随温度的变化先增大再减小,并在假临界温度处达到最大值;PCHE半圆形通道内的换热特性高于普通圆形通道;其换热系数随流速的增加而增加;随热流密度的增加而增加;压力对换热特性的影响与介质所处的温度区间有关。  相似文献   

3.
为强化液化天然气在印刷电路板式换热器(PCHE)内的换热效能,提出周期性波动强化综合换热性能的错列正弦型微通道模型并采用数值模拟方法进行验证.得到了流体温度121-345 K范围内超临界LNG在错列正弦型微通道和直通道下,热流密度、质量流量及入口压力对传热系数和摩阻因子的影响规律.此外,结合场协同原理,提出评价局部综合...  相似文献   

4.
设计了一个可控制制冷剂流量、压力和温度等实验工况的微通道换热器相变流动与换热的可视化实验平台,对R134a制冷剂流经微通道换热器进行了冷凝换热实验研究.试验测量了小质量流率下的R134a制冷剂在多个饱和状态工况下的冷凝换热性能,涉及质量流量、进出口压力和温度等参数.实验分析了传热系数与雷诺数的关系,与Koyama的关联式预测比较接近.分析了摩擦系数随雷诺数的变化,与H L MO和Wu&Little方程计算得到的数值相近.  相似文献   

5.
建立了蜂窝板换热器湍流流动的物理数学模型,并应用数值分析方法模拟了蜂窝板换热器的三维流动传热过程;分析了不同雷诺数下通道内流动阻力和换热性能及其随雷诺数的变化规律,并与相同当量直径的平行平板通道的流动换热性能进行了对比.结果表明,蜂窝板换热器在换热系数提高的同时流动阻力也增大了,在雷诺数Re=3000~15000的范围内,其传热努塞尔数比平行平板增大了0.93~2.12倍,阻力系数增大了2.24~2.35倍.最后从场协同理论的角度分析了蜂窝板强化传热的机理.  相似文献   

6.
蜂窝板换热器内部流动传热特性研究   总被引:3,自引:0,他引:3       下载免费PDF全文
建立了蜂窝板换热器湍流流动的物理数学模型,并应用数值分析方法模拟了蜂窝板换热器的三维流动传热过程;分析了不同雷诺数下通道内流动阻力和换热性能及其随雷诺数的变化规律,并与相同当量直径的平行平板通道的流动换热性能进行了对比。结果表明,蜂窝板换热器在换热系数提高的同时流动阻力也增大了,在雷诺数Re=3000~15000的范围内,其传热努塞尔数比平行平板增大了0.93~2.12倍,阻力系数增大了2.24~2.35倍。最后从场协同理论的角度分析了蜂窝板强化传热的机理。  相似文献   

7.
微细通道换热器不仅体积换热系数大、换热效率高,而且具有优良的耐压性能、较强的抗腐蚀性、紧凑的结构及相对低廉的价格,已成为相关领域的一个研究热点。本文从微细通道换热器内流体流动摩擦特性,流体的单相对流换热、凝结换热、沸腾换热,临界热流密度,微细通道换热器结构的优化,结霜问题及其在制冷空调系统的应用等方面,对微细通道换热器进行较为详细的综述,以期为相关的研究领域提供有价值的参考。  相似文献   

8.
为研究微通道的正弦型底面结构对流动和传热性能的影响,设计了5种正弦型底面结构的微通道,并采用数值模拟方法研究其在不同雷诺数下通道内局部流动情况和传热性能。结果表明,正弦型微通道内存在二次流;正弦型微通道内局部压力、泊肃叶数、壁面温度和努塞尔数沿着流动方向都出现波动的趋势,但后两者较平缓。在所研究的雷诺数范围(230~1 060)内,正弦型微通道平均泊肃叶数随着雷诺数增大而增大;部分正弦型结构微通道在雷诺数不大于600时,平均努塞尔数略低于光滑通道,说明传热效果有所降低;在雷诺数大于600时,所有正弦型通道的平均努塞尔数大于光滑通道,表明传热效果较好。  相似文献   

9.
为了提高微通道散热器的散热性能,采用Fluent对散热器内部流场流动和换热特性进行了数值仿真分析。同时通过调整通道和翅片截面的宽度,添加肋柱与孔洞,设计了一种新型微通道散热器结构。结果表明:在不同入口体积流量(0.25—1.5 L/min)下,新型微通道散热器结构的各通道内质量流量的极差为初始结构的1/8,流体不均匀分配因子为初始结构的9%—56%,基底最大温度降低6.4—8.8℃,基底平均温度降低7.1—10.1℃,高换热量区内换热量的极差为初始结构的17%—24%,平均Nu数是初始结构的2.1—2.4倍。Rth值较初始结构减少了7%—26%。说明该设计结构下的内部流场分配均匀且换热型性能优越。  相似文献   

10.
为了研究开口结构对微肋阵矩形通道沸腾换热的影响,本文对开口水滴形微肋阵通道流动沸腾换热性能进行可视化实验,并与水滴形微肋阵通道流动沸腾换热性能对比,借助高速摄像仪对通道内不同流量下气泡的流动和生长过程进行记录与分析。以去离子水为工质,入口温度为30℃,流量范围为0.2~7.2 kg/h,加热电压为60 V,拍摄频率为500 fps。实验结果表明:微肋阵的开口结构会影响流动特性;开口结构增加了传热面积,有利于汽化核心的形成,有利于换热。在较低和较高雷诺数下,开口水滴形微肋阵的对流换热优于水滴形微肋阵;开口水滴形通道Ⅱ区和Ⅲ区域内气泡的等待时间和生长时间均随雷诺数的增大而逐渐增大,且气泡的生长时间大于等待时间,此外,针肋末端Ⅱ区域的等待时间和生长时间均比Ⅲ区域的更短。  相似文献   

11.
Cooling of miniature size electronic components has become a challenge for designer in the development of integrated circuits. Micro pin fin heat sink and Micro channel pin fin heat sink are thermal management techniques for effective cooling. The paper presents comparison of fluid flow and heat transfer characteristics for micro pin fin heat sink and micro channel pin fin heat sink with unfinned micro channel heat sink. A three-dimensional heat sink with water as coolant subjected to constant heat flux 10 W/cm2, for Reynolds number ranging between 100 and 900 was considered for the study. Extended surfaces of different shapes namely, square and circular with staggered arrangement was considered for both micro pin fin heat sink and micro channel pin fin heat sink. Two non-dimensional parameters namely Nusselt number and thermal performance index were employed to access the performance of heat sink. Results indicate that the microchannel pin fin heat sink has highest nusselt number and friction factor over the whole Reynolds number range. Results also revealed that formation of secondary vortices enhances heat transfer in micro channel heat sink with square pin fin compared to micro channel heat sink with circular pin fin. However, pin fin heat sink has better thermal performance index compared to Micro channel pin fin heat sink and is more preferable when heat dissipation is compared with pressure drop penalty. The Governing equations for fluid and solid domain were solved using FLUENT to study flow and heat transfer characteristics.  相似文献   

12.
The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal–physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.  相似文献   

13.
H.L. Mo  Y.X. Zhou  T.Y. Zhu  T.W. Guo 《低温学》2004,44(5):301-307
Forced convection of low temperature (80-150 K) nitrogen gas flowing through rectangular channels with hydraulic diameters of 0.513-1.814 mm and aspect ratios of 0.013-0.048 has been investigated experimentally. Close attention was focused on the effects of channel depth and heat addition on the heat transfer and flow characteristics, the transition from laminar to turbulent flow and the existence of an optimum channel depth. A dimensionless heating number was adopted to characterize the heating effect. The experimental correlation developed for the Nusselt number shows that the heat addition is the most important effect, followed by the channel aspect ratio, Reynolds number and Prandtl number.  相似文献   

14.
Ice slurry flow through horizontal pipes is studied experimentally in order to find out its heat transfer and isothermal friction properties. Using 9% NaCl brine as the carrier fluid, different flow conditions are discussed with a view to analyse each involved variable. In this Part I, experimental data are directly correlated and easy-to-use expressions for the Darcy friction factor and the Nusselt number were obtained as functions of non-dimensional parameters expressing flow and geometrical properties. The most remarkable conclusion obtained is a clear influence of the ice particle–pipe diameter ratio in the pressure drop parameters, not previously taken into account, which must be confirmed in heat transfer process. The thermal and hydraulic performance of ice slurry flowing through corrugated pipes is also analysed showing, with regard to smooth pipe, the same behaviour in pressure drop and opposite behaviour in heat transfer.  相似文献   

15.
B. Renard  L. Tadrist 《低温学》2006,46(9):629-642
In an effort to optimize superconductor cryogenics of large coils, dual channel cable-in-conduit conductors (CICC) have been designed. The qualitative and economic rationale of the conductor central channel is here justified but brings high complexity to the conductor cooling characteristics. Temperature gradients in the cable must be quantified to guarantee conductor temperature margin during coil operation under heat disturbance and set adequate inlet temperature. A simple one-dimensional thermal model, with neither fluid nor strand or jacket conduction, allows to better understand and quantify the steady state behavior of CICC central and annular channels. This thermohydraulic model with homogeneous central and annular temperatures and no jacket conduction is summarized with explicit thermal coupling equations. Local convection coefficients chosen proportional to friction factors lead to a model of global interchannel heat exchange coefficient serving the bithermal model. A first stationary experimental evaluation of the internal heat transfer coefficient using the interchannel heat exchange space constant at various heat loads and mass flow rates is illustrated on two full size samples tested at cryogenic temperatures. Annular heaters experiments with low distributed power achieve pertinent model correlation. Discrepancy between model and experimental data may be linked to the simplistic homogeneous annular temperature hypothesis, to the estimate of CICC mass flow distribution among channels, and to gravitational effects at high heat loads. Perturbation due to the thermosiphon generated between the two channels is considered since neither the experiments nor the expected applications are free of gravity.  相似文献   

16.
《Advanced Powder Technology》2021,32(10):3869-3884
The current numerical paper introduces the flow and heat transfer characteristics across a new configuration channel, namely: the curved-corrugated channel, using binary hybrid nanofluid. E-shaped baffles with different geometrical parameters have been employed while CuO / MgO-water nanofluid is experimentally prepared with different volume fractions 0.0–5%. Measured thermophysical properties is utilized to simulate the flow and heat transfer characteristics by adopting the κ-ε model. The influences of corrugations, baffles, and geometric parameters; gap ratio (GR = 0.2,0.3,0.4, and 0.5), blockage ratio (BR = 0.2,0.25,0.3, and 0.35), and pitch angle (β = 10°, 12.5°, and 15°) at different Reynolds number (8000–28000) are evaluated using thermal–hydraulic performance method. The outcomes show that vortex flow and increased turbulence will increase heat transfer due to influences of corrugations and baffles. It is confirmed that the flow variations governed by the geometric parameters of the design and the best performance produce at lowest pitch angle 10°, lowest gap ratio (GR = 0.2) and highest blocking ratio (BR = 0.35). Regards the fluid medium, CuO / MgO particles improve the thermophysical properties of the base fluid and thereby boost the thermal performance of the system. It has found new correlations between the Nusselt number, friction Factor and design parameters of tested channel with using binary hybrid nanofluid.  相似文献   

17.
Most of the research work applied to the intensification of heat transfer through convection in turbulent flow, has been devoted to local heat flow and local friction losses. Intensification is obtained by means of turbulators inside smooth channels (fins, steps).In the re-sticking zone of the boundary layer, the heat transfer is maximum and the friction factor is minimum, the latter being maximum in the free flow zone. Maximum values are more than ten times higher than those observed in an undisturbed analogous stream.As early as 1958, those results have been applied to the construction of heat exchangers by which the heat transfer coefficient rises faster than the hydraulic resistance (discovery No 242).Such heat exchangers (water-air) are built from ribbed fin-plates and cross-tubes. The ribs act as turbulators inside the channels which are allowed between plates and tubes.The present paper deals with the influence of geometrical shape and distribution of the turbulator on thermal and hydraulic efficiencies of heat transfer surfaces.The results are presented as graphs
where:Nu,NuR = Nusselt number for channels with and respectively, without, turbulators; ε,εR=friction loss factor for channels with, and respectively, without, turbulators; l'/d = pitch of trottling=ratio between the length of smooth piece l' and its hydraulic diameter d; d1/d=rate of throttling=ratio between hydraulic diameter of the throttled section d1, and that of the smooth piece d.Experimentations have been performed with 16 different combinations of l'/d and d1/d, in channels of the same triangular section and Reynolds number varying between 400 and 5500; in channels with different triangular sections; in channels with rectangular sections.Main results are: the heat transfer intensification depends on the parameters l'/d and d1/d; the maximum intensification depends on the shape of the channel section, the highest values being obtained with triangular shaped channels; the most efficient turbulators
consist of two dimensioned surfaces generated along the channel radius.New radiators for farm tractor-engines have been developed. Their volume and weight are half those of conventional radiators. Their construction does not require any significant modification of the traditional manufacturing technique of such type of equipment and their utilization in dusty environments does not raise any particular difficulty.  相似文献   

18.
A comprehensive literature review and analysis of recent microchannel/microgap heat transfer data for two-phase flow of refrigerants and dielectric liquids is presented. The flow regime progression in such a microgap channel is shown to be predicted by the traditional flow regime maps. Moreover, Annular flow is shown to be the dominant regime for this thermal transport configuration and to grow in importance as the channel diameter decreases. The results of heat transfer studies of single miniature channels, as well as the analysis and inverse calculation of IR images of a heated microgap channel wall, are used to identify the existence of a characteristic M-shaped heat transfer coefficient variation with quality (or superficial velocity), with inflection points corresponding to transitions in the two-phase cooling modalities. For the high-quality, Annular flow conditions, the venerable Chen correlation is shown to yield predictive agreement for microgap channels that is comparable to that attained for macrochannels and to provide a mechanistic context for the thermal transport rates attained in microgap channels. Results obtained from infrared imaging, revealing previously undetected, large surface temperature variations in Annular flow, are also reviewed and related to the termination of the favorable thin-film evaporation mode in such channels.  相似文献   

19.
Supercritical water (SCW) has shown promise as a working fluid to extract heat from hot dry rock (HDR); however, fundamental research on its heat transfer characteristics in HDR fractures is still required. A 2D heat transfer model that considers the variable thermophysical properties was updated to numerically investigate the effects of mass flow rate, thermal reservoir temperature, and fracture aperture size on the heat transfer characteristics of SCW flow through a single HDR fracture. The heat transfer performance of SCW and supercritical CO2 (scCO2) was compared under the same conditions. The results indicate that the heat transmission performance of SCW is superior to scCO2 at high temperature and high pressure. It is essential to synthesize the thermal reservoir temperature and pressure, site conditions, and heat transmission fluids during HDR development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号