首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
以FeC2O4·2H2O和FePO4作为混合铁源,采用高温固相法制备锂离子电池正极材料碳包覆磷酸铁锂(LiFePO4/C)。采用SEM、XRD、恒电流充放电测试和交流阻抗谱对材料的表面形貌、物相结构和电化学性能进行了分析。在700℃、混合铁源n(FeC2O4·2H2O)∶n(FePO4)=1∶1时制备的LiFePO4/C的电化学性能较好。在2.5~4.1 V充放电,0.2 C时的放电比容量为165.9 mAh/g,2.0 C首次和第20次循环的放电比容量分别为135.3 mAh/g、141.9 mAh/g。  相似文献   

2.
胡国荣  周玉琳  彭忠东  高旭光 《电池》2007,37(5):339-341
以FeSO4、H3PO4和H2O2为原料,通过控制反应温度、pH值、FeSO4与H3PO4的物质的量比等反应条件,合成了前驱体FePO4.在氩气气氛中煅烧FePO4、Li2CO3和葡萄糖的混合物,制备了LiFePO4.充放电测试表明:LiFePO4样品具有3.4 V的放电电压平台,在0.1 C倍率下的首次充放电比容量分别为154.1 mAh/g和146.5 mAh/g.  相似文献   

3.
以FeSO4·7H2O、NH4H2PO4和H2O2为初始原料,通过液相沉淀法制得前驱体FePO4,然后通过碳热还原制得LiFePO4。我们采用两种加碳方式:a、先制得FePO4,然后加炭黑混合高温合成LiFePO4;b、先把炭黑分散在液相中,然后通过液相沉淀制得含碳的FePO4,再高温合成LiFePO4。SEM(扫描电子显微镜)分析表明:方法b制备的FePO4颗粒比方法a制备的FePO4颗粒细小。在其它条件相同的情况下方法b合成的LiFePO4的电化学性能要优于方法a合成的电化学性能。采用方法b于560℃煅烧12h制备的LiFePO4在0.1C放电倍率下其比容量为149mAh/g,而当放电倍率达到1C时,放电比容量为124mAh/g,且具有良好的循环性能。  相似文献   

4.
采用共沉淀法,通过改变柠檬酸的加入量制备了一系列中间体FePO4·x H2O,之后以合成的FePO4·x H2O为三价铁源,采用两步烧结法来合成LiFePO4/C复合材料,运用XRD、SEM以及电化学测试方法对材料性能进行表征。结果表明:柠檬酸的加入能够有效地控制FePO4·x H2O材料的形态特征及粒径大小,使其分布更为均匀,减弱了团聚现象的发生,而磷酸铁锂的性能也随之受到影响,当柠檬酸加入量较低时,磷酸铁锂在0.1 C充放电倍率下,放电比容量可达到约160 mAh/g,且通过多次充放电循环后,容量保持率在98%以上。但当柠檬酸添加量过多时,材料性能则不能继续提升。  相似文献   

5.
球形LiFePO4的制备及电化学性能   总被引:7,自引:3,他引:4  
于春洋  夏定国  赵煜娟  王忠丽 《电池》2006,36(6):432-434
以(NH4)3C6H5O7为络合剂,通过控制结晶法制备了球形NH4FePO4.H2O,并研究了反应温度、滴加速度、搅拌速度和反应物浓度等对颗粒形态的影响。以球形NH4FePO4.H2O为前驱体,制备了球形LiFePO4,振实密度达1.08 g/cm3。充放电测试结果表明:样品在0.05C下的首次放电比容量为77.3 mAh/g;在0.05C、0.10C和0.50C下分别循环20次后,样品的放电比容量分别为77.2 mAh/g、54.7 mAh/g和42.7 mAh/g。  相似文献   

6.
以FeSO4.7H2O,H3PO4,H2O2和NH3.H2O为原料合成纳米化的FePO4.1.5H2O,并将Li2CO3、FePO4.1.5H2O和葡萄糖混合球磨,在800℃下通过碳热还原合成LiFePO4/C。采用X射线衍射(XRD)、扫描电镜(SEM)、循环伏安(CV)和恒电流充放电测试研究了相同温度下,不同合成时间LiFePO4/C样品的结构、形貌及电化学性能。结果表明:在800℃12 h下合成的样品具有最佳的电化学性能,在0.2C(1C=150mAh/g)倍率下放电,首次放电比容量为142.7mAh/g,经过20次充放电循环后容量基本保持不变。  相似文献   

7.
制备了NH4FePO4·H2O,再用半固相法制得LiFePO4/C.用XRD、SEM、恒流充放电测试及交流阻抗谱等方法,研究了样品的结构、形貌及电化学性能.样品的结晶度高、粒径均匀,含碳量为1.09%;0.2 C循环的最高放电比容量为139.5mAh/g,放电平台为3.2 V,循环性能良好.增大极化电压(2.7~4.1V),正极反应由扩散控制逐渐转向动力学控制.  相似文献   

8.
蜂窝结构球形LiFePO4/C的制备及性能   总被引:2,自引:0,他引:2  
李冰  王殿龙 《电池》2007,37(6):422-424
以FeSO4·7H2O、H3PO4和氨水为原料,采用控制结晶法制备前驱体NH4FePO4·H2O,然后与LiCO3、葡萄糖混合,通过高温(800℃)烧结18 h,合成锂离子电池正极材料球形LiFePO4/C.LiFePO4/C二次颗粒为球形蜂窝状结构,具有3.0 V左右的放电电压平台.样品的碳含量为5%,在0.1 C下的首次充、放电比容量分别为163 mAh/g和153 mAh/g,100次循环后的放电比容量为123 mAh/g.  相似文献   

9.
多孔前驱体渗碳制备LiFePO4/C   总被引:1,自引:1,他引:0  
用控制结晶法制备了多孔前驱体FePO4·xH2O,将葡萄糖和Li2CO3渗入到前驱体中,然后通过碳热还原反应合成LiFePO4/C.采用XRD、SEM、恒流充放电和交流阻抗等方法对样品进行了研究.反应剩余的碳分布在LiFePO4颗粒的内部及表面,提高了材料的电化学性能.在620℃下合成的LiFePO4/C的0.1C、0.5C和1C首次放电比容量分别为156mAh/g、139mAh/g和136mAh/g,循环30次后的容量衰减率仅为0.64%、2.16%和4.41%.该样品虽然含碳9.74%,但振实密度仍有1.20g/cm3.  相似文献   

10.
以FeCl2.4 H2O、(NH4)2HPO4及LiOH·3 H2O和柠檬酸为原料,采用水热模板法制备花形结构的LiFePO4纳米棒。此方法合成的LiFePO4形貌可控,粒径均匀,分散性好,电压平台稳定,具有高于160 mAh/g的比容量。还研究了柠檬酸浓度以及前驱体的煅烧温度对LiFePO4的形貌以及电化学性能的影响。实验表明在柠檬酸浓度为0.1 mol/L、煅烧温度650℃下,样品为分布均匀的纳米"花形棒状"结构,尺寸均匀、晶形稳定,电压平台为3.45 V,且电压平台宽,首次充放电比容量高达162.5 mAh/g,0.5 C充放电50次容量保持率将近100%。  相似文献   

11.
以H3PO4、Fe2O3、LiOH·H2O和葡萄糖为原料,利用H2还原制备了LiFePO4/C复合材料,并进行了XRD、SEM、碳含量和振实密度分析,以及电化学性能测试。制备的LiFePO4/C复合材料的含碳量为1.9%,振实密度为1.4g/cm3;0.1C、1.0C首次放电比容量分别为148.4mAh/g和128.4mAh/g,1.0C循环60次的容量保持率为98.8%。通过机理研究,发现了反应的中间产物Li3PO4、Li3Fe2(PO4)3、Fe2Fe(P2O7)2和LiFeP2O7。  相似文献   

12.
以FePO4·xH2O和无水FePO4为铁源,采用高温固相-碳还原法制备LiFePO4/C。X射线衍射光谱法(XRD)、扫描电子显微镜法(SEM)、粒度分布以及比表面积试验表明:以FePO4·xH2O为铁源时,产品颗粒均匀,粒度分布窄,振实密度仅为0.8g/mL;以无水FePO4为铁源时,产品粒度分布较宽,最大粒径达到32μm左右,振实密度高达1.2g/mL。电化学性能测试表明:以FePO4·xH2O为铁盐的产物,充电时间长,0.2C比容量为138mAh/g;以无水FePO4为铁盐的产物,充电时间短,比容量提高到142mAh/g。  相似文献   

13.
改进的碳热还原法制备正极材料LiFePO4/C   总被引:4,自引:0,他引:4  
朱炳权  李新海  张宝  王志兴  郭华军 《电池》2005,35(6):445-447
通过液相沉淀法制得前驱体FePO4/C,然后通过改进的碳热还原法得到LiFePO4/C.利用XRD和SEM研究了反应温度、时间对合成产物的晶体结构、表面形貌的影响.实验结果表明:反应温度和反应时间对产物的性能有影响,500℃下煅烧10 h合成的样品以0.1 C充放电,首次放电比容量为142 mAh/g.  相似文献   

14.
以LiH2PO4作为Li源和P源,FeC2O4·2H2O作为铁源,通过溶剂热法制得片状LiFePO4.采用原位氧化聚合方法对磷酸铁锂进行聚吡咯包覆改性,同时在原位聚合过程中,表面活性剂的加入对产物结构和性能的影响也得到了研究.所得LiFePO4产物分别采用X-射线衍射(XRD),傅里叶转换红外光谱(FT-IR),热重-示差分析(TGA-DSC),场发射扫描电镜(FE-SEM),研究了LiFePO4包覆聚吡咯前后形貌和结构的变化.采用交流阻抗方法和循环充放电测试研究了产物的电化学性能.结果表明:聚吡咯包覆的LiFePO4(未经SDBS掺杂)的首次放电比容量达到132.2 mAh/g.SDBS掺杂后,首次放电比容量达到142.7 mAh/g,当倍率为1C时,其放电比容量为105.6 mAh/g.  相似文献   

15.
郭忻  卢周广  唐有根 《电池》2012,42(5):239-241
采用水热-固相二步法合成了纳米棒状磷酸铁锂(LiFePO4)正极材料,并对晶体结构、形貌和性能进行了XRD、SEM、透射电子显微镜(TEM)和恒流充放电分析。利用水热法可合成纳米棒状磷酸亚铁[Fe3(PO4)2.H2O]前驱体,固相法可得到纯相LiFePO4纳米棒。在2.5~4.2 V充放电,产物的1.0C、5.0C放电比容量分别为125 mAh/g和104mAh/g,具有良好的高倍率性能。  相似文献   

16.
陈通  申韬艺  吴敏昌  乔永民  王利军 《电源技术》2021,45(10):1237-1239,1244
磷酸铁(FePO4)作为磷酸铁锂(LiFePO4)材料的前驱体,随着锂离子电池的发展引起了广泛的关注.磷化渣是磷化工业的副产物,含有大量的磷酸铁,将磷化渣提纯得到粗提纯FePO4,经水热重结晶得到亚微米-微米级前驱体FePO4,以碳热还原的手段得到LiFePO4.研究了水热过程中十六烷基三甲基溴化铵(CTAB)添加量、pH对FePO4粒度的影响.结构表征手段主要有XRD、SEM、LPS等,使用电化学工作站表征LiFePO4材料的电化学性能.电化学表征结果表明,该材料具有较高的的首次充电比容量,接近磷酸铁锂的理论比容量,库仑效率达到93.51%,但高倍率下的充放电性能较差.  相似文献   

17.
用共沉淀法合成了球形Ni0.8Co0.2(OH)2,然后将其与LiOH·H2O混合后在不同高温合成条件下制得LiNi0.8Co0.2O2。系统地研究了保温时间、Li/(Ni Co)配比、焙烧温度对合成的Li-Ni0.8Co0.2O2材料的电化学性能的影响。电化学充放电循环测试结果表明:在优化条件下制得的LiNi0.8Co0.2O2材料表现出优良的电化学性能,其首次充电容量达到219.3mAh/g,首次放电容量达到195.4mAh/g,首次充放电效率89.1%,循环20次后放电容量仍能保持在185mAh/g。  相似文献   

18.
以三价铁制备LiFePO4/C复合材料及其电化学性能   总被引:1,自引:0,他引:1  
王冠  江志裕 《电池》2007,37(3):195-198
以Fe203、FeP04为铁源,分别采用蔗糖和活性铁粉为还原剂,设计了4条反应路线,利用热还原法制备了LiFePO4/C复合材料.用XRD和SEM对晶体结构及表面形貌进行了研究,用循环伏安法、充放电测试和交流阻抗法研究了电化学性能.制备的LiFeP04/C复合材料具有较好的电化学性能,以FePO4和活性铁粉为原料制得的复合材料性能最佳,以0.2 C充放电,首次放电比容量为151 mAh/g,第200次循环的放电比容量仍能保持99.5%.  相似文献   

19.
通过高温固相法,以金属氧化物(TiO2,V2O5,Nb2O5)作前驱体,合成了不同金属离子掺杂的LiFePO4/C复合材料。对以LiFePO4/C为正极的电池进行(XRD)、循环伏安和恒流充放电测试。结果表明,LiNb0.05Fe0.95PO4/C的电化学性能最好,0.05 C倍率下首次放电比容量达到154 mAh/g,即使在1 C倍率下放电,经过60次循环依然能保持在117 mAh/g左右。Fe位掺杂的效果与掺杂离子的半径、价态有密切关系,半径与Fe离子接近、价态高的离子对提高LiFePO4的电化学性能有利。  相似文献   

20.
高密度球形LiFePO4的合成及性能   总被引:28,自引:3,他引:25  
通过控制结晶法制备球形前驱体FePO_4·xH_2O,经过预烧得到高密度的FePO_4,与Li_2CO_3和葡萄糖均匀混合,采用碳热还原法合成锂离子蓄电池正极材料球形磷酸铁锂(LiFePO_4)。用X光衍射和扫描电镜分析对FePO_4和LiFePO_4的结构进行了表征。充放电测试表明LiFePO_4具有3.4V放电电压平台,在0.1mA/cm2电流密度条件下,首次充电比容量为146.9mAh/g,放电比容量为129.7mAh/g。该球形LiFePO4粉末的振实密度高达1.8g/cm3,首次放电比容量高达233.5mAh/cm3,远高于一般非球形LiFePO_4正极材料。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号