首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The alkylation reaction of poly(methylvinylpyridine)–poly(ethylene terephthalate) graft copolymers with different alkylating agents using monochloroacetic acid has proved to be the best as far as degree of alkylation and enhancement in electrical conductivity caused thereby are concerned. Kinetic investigation revealed that alkylation follows a second-order reaction, and the apparent activation energy is 15.23 cal/mole.  相似文献   

2.
X-ray photoelectron spectroscopy is used to study the surface segregation of siloxane in dilute blends of poly(methyl methacrylate)/poly(dimethyl siloxane) graft copolymers in poly(vinyl chloride)(PVC). The graft copolymers are found to be extremely efficient surface modifiers, which form, when added in amounts of 0.5% or more, a continuous siloxane overlayer on the surface of PVC. © 1995 John Wiley & Sons, Inc.  相似文献   

3.
The synthesis and the application of graft copolymers prepared from ozonized polyethylene (HDPE) are described. The homopolymer was treated with ozone and then copolymerized with monomers, such as methyl methacrylate, hydroxy ethyl methacrylate, glycidyl methacrylate, maleic anhydride, and ethyl acrylate. The products were used as compatibilizers in HDPE/PET [poly(ethylene terephthate)] blends. The mechanical properties and the influence of graft comonomers are described. The copolymers were characterized by the grafting rate and FTIR spectroscopy.  相似文献   

4.
The properties of poly(ethylene terephthalate) (PET) and its copolymers containing 0.04–0.15 mol% of pentaerythritol and trimethylolethane (TME) have been investigated. The molecular weight of the copolymers increased with comonomer content, and this effect was observed significantly with pentaerythritol copolymers, resulting in broad molecular weight distribution. The comonomer effect on the mechanical properties was small. The shear viscosity of the copolymers showed shear thinning within the experimental shear rate range. The crystallization rate and birefringence of the fibres containing 0.103 mol% pentaerythritol increased with the spin draw ratio, whereas they decreased with comonomer content. © 2002 Society of Chemical Industry  相似文献   

5.
The mechanical properties of the poly (vinyl chloride) (PVC) and poly (glycidyl methacrylate) [poly (GMA)] blend system and the PVC and poly (hydroxyethyl methacrylate) [poly (HEMA)] blend system and their crosslinked films were investigated. At the same time, the mechanical properties for the corresponding graft copolymers such as PVC-g-GMA, PVC-g-HEMA, and their crosslinked films were also investigated in this study. The results showed that the tensile strengths for PVC–poly (GMA) blend systems were higher than those for PVC-g-GMA graft copolymer, and the tensile strengths for PVC-g-HEMA were higher than those for PVC-poly (HEMA) blend systems. However, the mechanical properties for the PVC–poly (GMA) blend system were not affected by the crosslinking of the blend system, but those for PVC-poly (HEMA) and their graft copolymers decreased with an increase of the equivalent ratio ([NCO]/[OH]) of the crosslinker. Finally, the surface hydrophilicity of the PVC-g-HEMA graft copolymer and PVC-poly (HEMA) blends were also assessed through measuring the contact angle. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 67: 307–319, 1998  相似文献   

6.
Summary The compatibility of blends of poly(vinyl acetate) and poly(ethylene oxide) has been studied by rheological and thermo-optical analysis. Results from experiments point to the conclusion that there is extensive mixing between the segments of the two macromolecules in the blend. The interaction between the two polymers is manifested by a decrease in the melting point and a continuous decrease in viscosity with decreasing POE content in the mixture.  相似文献   

7.
Polymerization of glycidyl methacrylate (GMA), methyl methacrylate (MMA), and acrylic acid (AA)/styrene (St) mixtures with poly(ethylene terephthalate) (PET) fabric to different polymer add-ons was performed. Moisture regain, dyeability, and soiling properties of the modified PET were examined. It was found that introduction of poly(GMA) in PET structure brings about (a) improved moisture regain, (b) enhanced dyeing with disperse dyes, (c) affinity and possible dyeing with acid, direct, and reactive dyes, (d) improved aqueous and nonaqueous oily soil resistance, and (e) decreased ease of soil removal. The magnitude of moisture regain, dyeability, and soiling properties are dependent upon the percent of polymer add-on. Polymerization of MMA with PET improved the dyeability of the latter with the disperse dye as well as its resistance to nonaqueous oily soil while decreasing the resistance to aqueous soiling and ease of both aqueous and nonaqueous soil removal. In the case of PET polymerized with poly(AA/St), there was a considerable enhancement in moisture regain, dyeing with the disperse dye, and resistance to aqueous and non-aqueous oily soiling. On the other hand, both aqueous and nonaqueous soil characteristics of PET were imparted by polymerization of the latter with AA/St mixtures.  相似文献   

8.
Blends of low‐density polyethylene (LDPE) and poly(ethylene terephthalate) (PET) were prepared with different weight compositions with a plasticorder at 240°C at a rotor speed of 64 rpm for 10 min. The physicomechanical properties of the prepared blends were investigated with special reference to the effects of the blend ratio. Graft copolymers, that is, LDPE‐grafted acrylic acid and LDPE‐grafted acrylonitrile, were prepared with γ‐irradiation. The copolymers were melt‐mixed in various contents (i.e., 3, 5, 7, and 9 phr) with a LDPE/PET blend with a weight ratio of 75/25 and used as compatibilizers. The effect of the compatibilizer contents on the physicomechanical properties and equilibrium swelling of the binary blend was investigated. With an increase in the compatibilizer content up to 7 phr, the blend showed an improvement in the physicomechanical properties and reduced equilibrium swelling in comparison with the uncompatibilized one. The addition of a compatibilizer beyond 7 phr did not improve the blend properties any further. The efficiency of the compatibilizers (7 phr) was also evaluated by studies of the phase morphology (scanning electron microscopy) and thermal properties (differential scanning calorimetry and thermogravimetric analysis). © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

9.
Poly(ethylene oxide), poly(vinyl alcohol), and their blend in a 40 : 60 mole ratio were doped with aluminum isopropoxide. Their structural, thermal, and electrical properties were studied. Aluminum isopropoxide acts as a Lewis acid and thus significantly influences the electrical properties of the polymers and the blend. It also acts as a scavanger for the trace quantities of water present in them, thereby reducing the magnitude of proton transport. It also affects the structure of polymers that manifests in the thermal transformation and decomposition characteristics. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 2147–2157, 1998  相似文献   

10.
Poly(ethylene terephthalate) copolymers were prepared by melt polycondensation of dimethyl terephthalate and excess ethylene glycol with 10–40mol% (in feed) of poly(ethylene glycol) (E) and poly(tetramethylene glycol) (B), with molecular weight (MW) of E and B 200–7500 and 1000, respectively. The reduced specific viscosity of copolymers increased with increasing MW and content of polyglycol comonomer. The temperature of melting (Tm), cold crystallization and glass transition (Tg) decreased with the copolymerization. Tm depression of copolymers suggested that the E series copolymers are the block type at higher content of the comonomer. Tg was decreased below room temperature by the copolymerization, which affected the crystallinity and the density of copolymer films. Water absorption increased with increasing content of comonomer, and the increase was much higher for E1000 series films than B1000 series films. The biodegradability was estimated by weight loss of copolymer films in buffer solution with and without a lipase at 37°C. The weight loss was enhanced a little by the presence of a lipase, and increased abruptly at higher comonomer content, which was correlated to the water absorption and the concentration of ester linkages between PET and PEG segments. The weight loss of B series films was much lower than that of E series films. The abrupt increase of the weight loss by alkaline hydrolysis is almost consistent with that by biodegradation.  相似文献   

11.
Poly(ethylene terephthalate) (PET) copolymers containing 4,4′-, 3,5-, and 2,4-benzophenone dicarboxylate chromophores have been synthesized by transesterification of PET with benzophenone 4,4′-dicarboxylic acid (4,4′-BDA), dimethyl benzophenone 4,4′-dicarboxylate (4,4′-BDE), dimethyl benzophenone 3,5-dicarboxylate (3,5-BDE) and dimethyl benzophenone 2,4-dicarboxylate (2,4-BDE). The benzophenone segments in the backbone induce photocrosslinking upon UV irradiation in the solid state most probably by a hydrogen atom abstraction mechanism. The crosslinking rate depends upon the concentration and the structure of chromophores as evidenced by gel content measurements. The photocrosslinking efficiency of 4,4′-benzophenone dicarboxylate containing polymers is higher than for 2,4- or 3,5-benzophenone dicarboxylate containing polymers. Photocrosslinked PET copolymers show increased glass transition temperatures and broadening of melting transitions.  相似文献   

12.
A postirradiation process was evaluated in polymerizing vinyl monomers on poly(ethylene terephthalate) (PET) film, fiber, and fabric. The use of DMF, pyridine, and DMSO as swelling agents to facilitate monomer incorporation and effective polymerization were also investigated. The solvents were effective in promoting the incorporation of acrylic acid (AA) in PET film and that of n-vinyl-2-pyrrolidinone (VP) in Dacron 54. AA, a good swelling agent for PET, produced equivalent polymerization yield and moisture regain results with or without any solvent on Dacron 54 and 64. Polymerization yields on films increased with increasing total doses, but those on yarns and fabrics were independent of total dose. The different results obtained on film versus yarn and fabric from solvent treatment and total dose is thought to be due to the different surface-volume ratio of these substrates. The moisture properties of the substrates were dependent mainly upon the monomer type. Among the monomers studied, VP gave highest moisture regain values, followed by AA. The tensile properties of the modified Dacron 54 were not affected. However the breaking elongation of the modified Dacron 64 was slightly lowered by postirradiation polymerization without solvent treatment and was increased when solvent treatment was included.  相似文献   

13.
Poly(ethylene terephthalate) (PET) fibers were grafted with poly(vinyl acetate) (PVAc) and poly(vinyl alcohol) (PVA). The effects of graft copolymers PVAc and PVA on morphological properties of PET were evaluated by differential thermal analysis, differential scanning calorimetry, and thermogravimetric analysis. Melting temperature, heat of fusion, and mass fractional crystallinity of PET was not affected by graft PVAc and PVA. No individual glass transition and melting points corresponding to the graft PVAc and PVA were observed, indicating thereby that graft copolymer mainly exists in the form of free chains inside the PET matrix. Poly(vinyl alcohol) graft copolymer degraded at much lower temperatures than poly(vinyl alcohol) in powder form. Thermal stability of PET fiber was not affected by graft PVAc, where as PET–g–PVA showed an additional degradation point at 360°C.  相似文献   

14.
Summary Poly(ethylene terephthalate) PET and poly(methyl methacrylate) PMMA blends were made by melt mixing in a batch reactor. Three different weight ratios of PET : PMMA (25:75, 50:50 and 75:25) were chosen to study the effect of blend composition on the degradation kinetics. A relationship between the fractional volatiles evolved per unit time and the fraction of polymer degraded is established. The kinetic parameters for degradation were found using modified Avrami’s non-isothermal equation. Parameters like degradation rate constant (k) and order of degradation (n), were evaluated for the virgin polymers and the blends.  相似文献   

15.
The complete steady-state flow properties of molten poly(ethylene terephthalate) for shear stresses ≦4.14 × 106 dynes/cm2 were determined. A single, complete master curve had been constructed in earlier work by Gregory and Watson; the curve interrelates the shear stress, shear rate, temperature, and molecular weight (inherent viscosity) by using a temperature superposition scheme from the literature and a similar molecular weight superposition scheme. Equations in agreement with theory and with other published experimental data were derived from the master curve. Results presented here make possible the direct calculation of the melt viscosity of poly(ethylene terephthalate) at shear stresses ≦4.14 × 106 dynes/cm2. The effects of a unit temperature change and/or a unit change in inherent viscosity (I. V.) on the melt viscosity were determined. For poly(ethylene terephthalate) with a 0.6 I. V., a 0.0025 change in I. V. accounts for about the same change in melt viscosity as a 1°C change in temperature.  相似文献   

16.
《Polymer》2003,44(24):7281-7289
A series of poly(ethylene terephthalate-co-ethylene 5-sodiosulfoisophthalate) copolyesters containing from 1 up to 50 mol% of sulfonated units was prepared by melt polycondensation from ethylene glycol and mixtures of dimethyl terephthalate and dimethyl 5-sodiosulfoisophthalate. The resulting copolymers had a random microstructure and contained oligo(ethylene glycol) units in amounts increasing with the content in sulfonated isophthalate units. Copolyesters with more than 20 mol% of 5-sodiosulfoisophthalic units were amorphous and easily soluble in water. The hydrodegradability of the copolyesters was very high as compared to poly(ethylene terephthalate), and increased with the content in sulfonated units. It was demonstrated that the susceptibility to acidic hydrolysis of these copolymers is mainly due to the presence of the sodium sulfonate groups, the influence of the oligo(ethylene glycol) units in this regard being noticeable but limited.  相似文献   

17.
Five to 15 percent of ethylene/vinyl acetate copolymers was compounded into rigid polyvinyl chloride, with the copolymers dispersed as discrete micro-domains, produced very efficient synergistic improvement of impact strength; as the vinyl acetate content of the copolymer increased from 28 to 60 percent, the synergistic peak moved to higher copolymer content and became higher and broader. Copolymer content correlated directly with melt flow and thermal stability, and inversely to modulus, strength, and heat-deflection temperature. The vinyl acetate content of the copolymer correlated directly with elongation, impact strength, and thermal stability, but inversely to modulus, heat-deflection temperature, low-temperature flexibility, and melt flow. When the copolymer content reached 25 percent, it formed a second continuous-phase, interpenetrating the polymer network structure and acting as a polymeric plasticizer, producing thermoplastic elastoplastics.  相似文献   

18.
Double crystalline poly(trimethylene terephthalate)/poly(ethylene oxide terephthalate) copolymers (PTT/PEOT), with PTT content ranging from 16.5 to 65.5 wt%, were synthesized by melt copolycondensation. The morphological transformation of samples from microphase separation to macrophase separation was investigated by gel permeation chromatography and transmission electron microscopy. Differential scanning calorimetry and in situ wide‐angle X‐ray diffraction suggested that all copolycondensation samples displayed double crystalline behavior. The melt‐crystallization peak temperatures (Tm, c values) of PTT chains monotonously increased with increasing PTT content and were higher than that of homo‐PTT when the content of PTT was above 30.6 wt%. Interestingly, Tm, c values of PEOT chains were also increased with increasing PTT content. Polarized optical microscopy revealed that all copolycondensation samples studied could form ring‐banded spherulites and band spacing increased with increasing Tc values. In addition, band spacing decreased with increasing PTT content at a given Tc. Strangely, although PEOT was the main component in all copolycondensation samples, spherulitic morphology formed by the advance crystallization of PTT did not change after PEOT crystallization. Only a subtle change of quadrant tones was detected. © 2012 Society of Chemical Industry  相似文献   

19.
Chenguang Yao  Guisheng Yang 《Polymer》2010,51(6):1516-11075
A new type of poly(ether-ester) based on poly(trimethylene terephthalate) as rigid segments and poly(ethylene oxide terephthalate) as soft segments was synthesized and its crystallization behavior and morphology were investigated. Differential Scanning Calorimetry revealed that the copolymer containing 57 wt% soft segments presented a low glass transition temperature (−46.4 °C) and a high melting temperature (201.8 °C), suggesting that it had the typical characteristic of thermoplastic elastomer. With increasing soft segment content from 35 to 57 wt%, the crystallization morphology transformed from banded spherulites to compact seaweed morphology at a certain film thickness, which was due to the change of surface tension and diffusivity caused by increasing the soft segment content. Moreover, with the decrease of film thickness from 15 to 2 μm, the crystallization morphology of the copolymer (57 wt% soft segment) changed from wheatear-like, compact seaweed to dendritic. Scanning Electron Microscopy revealed that some flower-like crystals presenting in the bulk, which had been surprisingly found in the poly(ether-ester) segmented block copolymers for the first time. Possible mechanism was discussed in the text.  相似文献   

20.
The nonisothermal crystallization kinetics of poly(ethylene terephthalate) (PET) and poly(methyl methacrylate) (PMMA) blends were studied. Four compositions of the blends [PET 25/PMMA 75, PET 50/PMMA 50, PET 75/PMMA 25, and PET 90/PMMA 10 (w/w)] were melt‐blended for 1 h in a batch reactor at 275°C. Crystallization peaks of virgin PET and the four blends were obtained at cooling rates of 1°C, 2.5°C, 5°C, 10°C, 20°C, and 30°C/min, using a differential scanning calorimeter (DSC). A modified Avrami equation was used to analyze the nonisothermal data obtained. The Avrami parameters n, which denotes the nature of the crystal growth, and Zt, which represents the rate of crystallization, were evaluated for the four blends. The crystallization half‐life (t½) and maximum crystallization (tmax) times also were evaluated. The four blends and virgin polymers were characterized using a thermogravimetric analyzer (TGA), a wide‐angle X‐ray diffraction unit (WAXD), and a scanning electron microscope (SEM). © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 3565–3571, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号