首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 594 毫秒
1.
Lead zirconate titanate (PZT) nanofibers are obtained by electrospinning a sol–gel based solution and polyvinyl pyrrolidone (PVP) polymer, and by subsequent sintering of the electrospun precursor fibers. The average diameter of the precursor PZT/PVP green fibers has increased with the aging of the precursor solution along with an increase in the viscosity. Bead-free uniform green PZT/PVP fibers were collected at about an ∼230 nm average fiber diameter using a 28 wt% PVP ratio solution with a viscosity of 290 mPa. Shrinkage of 40% was recorded on the fiber diameter after sintering. The X-ray diffraction pattern of the annealed PZT fibers exhibits no preferred orientation and a perovskite phase. Preparation of 3–3 nanocomposites by the infusion of polyvinylester into the nanofiber mat facilitates successful handling of the fragile mats and enables measurements of the dielectric properties. The dielectric constant of the PZT/polyvinylester nanocomposite of about 10% fiber volume fraction was found to be fairly stable and vary from 72 to 62 within the measurement range. The dielectric loss of the composite is below 0.08 at low frequencies and reaches a stable value of 0.04 for most of the measured frequencies.  相似文献   

2.
This article reports the jet evolution process and fiber formation mechanism of the amylopectin rich starch solution in centrifugal spinning system, and the linear polyvinylpyrrolidone (PVP) is applied to compare with starch solution. The results indicate that jet evolution processes of starch solution include steady state and Rayleigh–Taylor instability over the whole concentration range for the spinnability investigation, which are due to the hyperbranched molecular of amylopectin. As a compression, the linear molecular chain PVP solution expresses a steady state jet under the spinning concentration. The spinnability results show that the obtained starch fibers are always containing the beads due to the Rayleigh–Taylor instability of jet, but can be effectively controlled by solution concentration and amylose/amylopectin. Instead, the PVP fibers show a rapid decreasing of beads till to almost disappear with the increasing of solution concentration, which due to the improvement of chain entanglement increase the steady state portion of jet with the increasing of concentration. The thermal properties of obtained fiber show that fibers obtained from amylose with more thermal stability.  相似文献   

3.
Submicrometric and nanometric poly(lactic acid)/poly(vinyl pyrrolidone) (PLA/PVP) fibrous membranes containing 0, 5, 10, 15, and 20 wt % PVP, with or without 20 wt % Copaiba oil (Copaifera sp.), were produced by solution blow spinning (SBS), using polymer injection rate of 120 μL min?1, gas pressure of 2.4 kPa, working distance of 20 cm, and collector rotation of 200 rpm. The morphological, thermal, and spectroscopic properties of these membranes were characterized by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetry (TG), and Fourier transform infrared spectroscopy (FTIR). A method for the evaluation of membrane microbial barrier properties based on resazurin colorimetric method was proposed. Results showed that the addition of both PVP and Copaiba oil produced thicker fibers; otherwise, there was no effect on morphology. Thermal analyses (TG and DSC) indicated the immiscible nature of polymer blends produced, also confirmed by the spectroscopic studies. Antimicrobial barrier properties were related to the antimicrobial effect of Copaiba oil, combined with it hydrophobic nature. The hydrophilic nature of PVP favored degradation of fiber mats, impairing barrier property when higher concentrations of PVP were added. Results indicate that produced spun mats can potentially be used in applications such as wound dressing. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134 , 44802.  相似文献   

4.
Isothermal melt-spinning of two thermotropic liquid crystalline polymers (TLCPs), a wholly aromatic copolyester KU-9211 (also named K161 from Bayer AG) and an aliphatic containing TLCP, PET/PHB60 (Tennessee Eastman), was studied to analyze the effect of processing conditions on fiber properties. Fibers were melt-spun from a capillary rheometer equipped with an isothermal chamber in which cross-flowed air was used as the cooling medium. The processing variables studied included the extrusion temperature, the extrusion rate, the cooling conditions, and the draw ratio. As-spun fibers were characterized by measuring storage moduli and molecular orientation parameters as a function of draw ratio under various processing conditions. Among the processing variables studied, the draw ratio was the primary factor in determining both the fiber modulus and the molecular orientation. The extrusion rate did not appear to affect the fiber properties within the range studied. The properties of K161 fibers were also dependent on the extrusion and cooling temperatures, while PET/PHB60 fibers were rather insensitive to the processing temperatures within data scatter and temperatures studied. A composite model based on a rigid-rod rotation mechanism and the deformation of nematic domains in an elongational flow field was used to model the experimental results and was compared with other theories available. Conformance of data to the composite model was obtained by use of a single temperature dependent parameter n, suggesting that the rigid-rod rotation mechanism could be used to predict the orientation development of TLCPs. The Halpin-Tsai equations and the orthotropic equation for angular dependence were used to describe the elastic properties of the TLCP fibers.  相似文献   

5.
Nano and submicrometric fibers of poly(D ,L ‐lactide) (PDLLA or PLA) were spun from solutions using a solution blow spinning (SBS) apparatus. Fiber morphology and diameter were investigated by scanning electron microscopy as a function of polymer concentration, feed rate, and air pressure. A more systematic understanding of the SBS process parameters was obtained, and a quantitative relationship between these parameters and average fiber diameter was established by design of experiments and response surface methodology. It was observed that polymer concentration played an important role in fiber diameter, which ranges from 70 to 2000 nm, and its distribution. Lower polymer concentration tended to increase the formation of bead‐on‐string structures, whereas smooth fibers were formed at higher concentrations. Fiber diameter tended to increase with polymer concentration and decrease with feed rate. Based on these results, optimal conditions could be obtained for solution‐blow spun fibers. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011.  相似文献   

6.
This study is directed toward synergistic integration of processing of nylon 66 fibers with solid-state polymerization. The following two goals are sought through the incorporation of solid-state polymerization after the initial shaping operation: eliminating some of the processing problems in the production of high molecular weight, high performance industrial fibers and attainment of improved mechanical properties via high molecular weight. Successful solid-state polymerization has been achieved with as-spun fibers of nylon 66 and molecular weights up to 280,000 g/mol have been obtained from a starting molecular weight of 40,000 g/mol. It is shown that much of the ductility of the starting fiber can be retained, or even enhanced, with solid-state polymerization. Simulated drawing experiments using a thermal deformation analysis technique show an increase in the drawing potential of the solid-state polymerized fiber as compared to the starting material. This has important implications regarding the ultimate properties that can be achieved in fibers of condensation polymers. © 1994 John Wiley & Sons, Inc.  相似文献   

7.
The solubility parameters were used to choose the solvent for poly(vinyl pyrrolidone) (PVP) in electrospinning. In this study, a novel method for predicting the contribution value of the pyrrolidone group (a typical part of the PVP molecular structure) was proposed. The solubility parameters of PVP were calculated by this method, and accordingly, ethanol was chosen as the solvent for PVP. What is more, response surface methodology was used to facilitate a systematic investigation on the influence of the PVP solution concentration, feed rate, distance between the tip and collector, and operating voltage on the fiber diameter and morphology in electrospinning. The predicted fiber diameters by the response regression model, and the experimental values were in close proximity. The solution concentration and feed rate both had significant effects on the PVP fiber diameter, and there was some interaction between the solution concentration and the feed rate in this system. In addition, this study provided a train of thought for the electrospinning of polymer fibers with controllable and predictable fiber diameters. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40304.  相似文献   

8.
Electrospinning is an effective technology for the fabrication of ultrafine fibers, which can be the basic component of a tissue engineering scaffold. In tissue engineering, because cells seeded on fibrous scaffolds with varying fiber diameters and morphologies exhibit different responses, it is critical to control these characteristics of electrospun fibers. The diameter and morphology of electrospun fibers can be influenced by many processing parameters (e.g., electrospinning voltage, needle inner diameter, solution feeding rate, rotational speed of the fiber‐collecting cylinder, and working distance) and solution properties (polymer solution concentration and conductivity). In this study, a factorial design approach was used to systematically investigate the degree of influence of each of these parameters on fiber diameter, degree of fiber alignment, and their possible synergetic effects, using a natural biodegradable polymer, poly(hydroxybutyrate‐co‐hydroxyvalerate), for the electrospinning experiments. It was found that the solution concentration invoked the highest main effect on fiber diameter, whereas both rotational speed of the fiber‐collecting cylinder and addition of a conductivity‐enhancing salt could significantly affect the degree of fiber alignment. By carefully controlling the electrospinning parameters and solution properties, fibrous scaffolds of desired characteristics could be made to meet the requirements of different tissue engineering applications. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

9.
The development of various morphologies such as beads, beaded fibers, pure fibers and their scaling as a function of solution properties and processing variables in electrospinning is reported. Polyvinyl pyrrolidone (PVP), at various molecular weights and concentrations dissolved in a mixture of water and ethanol, was used to prepare different morphologies and sizes. The morphology of beads and fibers was predicted and measured based on an entanglement number diagram and rheological measurements. A constant-current electrospinning system was employed to control the processing variables. Scaling laws related to solution properties and processing variables (voltage, current and flow rate), and their effect on the fiber/bead diameter, were discussed. Viscosity (η), flow rate (Q), and current (I) were found to play significant roles in the control of morphology during electrospinning. Processing variables involved in electrospinning followed a power scaling that was in agreement with the model. The dependence of fiber diameter (df) on the Q/I for different molecular weights and concentrations also followed a power law, and the scaling varied between 0.11-0.29 for beaded fiber and 0.36-0.51 for pure fiber. In addition, the relationship between viscosity and fiber diameter followed scaling laws: df ∼ η0.98.  相似文献   

10.
The morphologies and properties of Polystyrene (PS)/Carbon Nanotube (CNT) conductive electrospun mat were studied in this paper. Nanocomposite fibers were obtained through electrospinning of PS/Di-Methyl Formamide (DMF) solution containing different concentrations and types of CNTs. The dispersion condition of CNTs was correlated to morphologies and properties of nanocomposite fibers. A copolymer as an interfacial agent (SBS, Styrene-butadiene-styrene type) was used to modify the dispersion of CNTs in PS solution before electrospinning. The results showed that the presence of the copolymer significantly enhances CNT dispersion. The fiber diameters varied between 200 nm and 800 nm depending on CNT type, polymer concentration and copolymer. The final morphological study of the fibers showed that CNT addition caused a decrease in beads formation along fiber axis before percolation threshold. However, addition of CNTs above percolation increased the beads formation, depending on the dispersion condition. The presence of SBS modified the dispersion, reduced the fiber diameter and the number of bead structures. Electrical conductivity measurements on nanocomposite mats of 15-300 μm in thickness showed an electrical percolation threshold around 4 wt% MWCNT; while the samples containing SBS showed higher values of conductivities below percolation compared to the samples with no compatibilizer. Enhancement in mechanical properties was observed by the addition of CNTs at concentrations below percolation.  相似文献   

11.
Polymeric fibers are prepared by using electric field driven fiber production technology—electrospinning and pressure driven fiber production technology—pressurized gyration. Fibers of four different polymers: polyvinylidene fluoride (PVDF), poly(methyl methacrylate (PMMA), poly(N‐isopropylacrylamide), and polyvinylpyridine (PVP), are spun by both techniques and differences are analyzed for their suitability as drug carriers. The diameters of electrospun fibers are larger in some cases (PVDF and PMMA), producing fibers with lower surface area. Pressurized gyration allows for a higher rate of fiber production. Additionally, drug‐loaded PVP fibers are prepared by using two poorly water‐soluble drugs (Amphotericin B and Itraconazole). In vitro dissolution studies show differences in release rate between the two types of fibers. Drug‐loaded gyrospun fibers release the drugs faster within 15 min compared to the drug‐loaded electrospun fibers. The findings suggest pressurized gyration is a promising and scalable approach to rapid fiber production for drug delivery when compared to electrospinning.  相似文献   

12.
It was well known that electrospinning is one of the simple technical methods for the production of polymer nanoparticles and nanofibers. Various polymers have been successfully electrospun into ultrafine particles and fibers in recent years mostly in solvent solution and some in melt form. In this work, hollow fibers with walls made of organic polymer composites have been formed by electrospinning in a single processing step under pressurized carbon dioxide (CO2). The experiments were conducted at 313 K and ∼8 MPa. The capability and feasibility of this technique was demonstrated by the production of polyvinylpyrrolidone (PVP) fibers whose size and wall thickness could be independently varied by controlling a set of experimental parameters. The PVP fibers had an average pore diameter 2–4 μm. At low pressures (<5 MPa; subcritical conditions), the solid fibers were formed, the baloon-like structures of PVP was formed with increasing pressure of CO2 at 8 MPa (supercritical condition)  相似文献   

13.
The morphology and mechanical properties of chitosan fibers obtained by spinning of hydroalcoholic (1,2propanediol/water) chitosan solutions of low DA and high molecular mass are reported. The impact of processing parameters on final fiber properties, such as fiber stretching at different steps of the spinning process, is investigated. A stretching ratio applied during the fiber coagulation appeared to have no significant effect on mechanical properties, whereas fiber drawing after the coagulation step, that is, during the washing step was a key parameter for the control of macromolecular orientation, fiber tenacity, and Young's modulus. The microstructure and morphology of the various as-spun chitosan fibers were studied by means of wide-angle and small-angle X-ray scattering and scanning electron microscopy. Microstructure impacts mechanical properties from the interplay of different deformation mechanisms acting at different length scales of the microstructure, namely the macromolecular orientation, the semicrystalline morphology, and the core–shell structure. The obtained monofilament fibers (45–70D) can be knitted. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47130.  相似文献   

14.
A technique for grafting acrylic polymers on the surface of ultra-high molecular weight polyethylene (UHMWPE) fibers utilizing 60Co gamma radiation at low dose rates and low total dose has been developed. Unlike some of the more prevalent surface modification schemes, this technique achieves surface grafting with complete retention of the exceptional UHMWPE fiber mechanical properties. In particular, poly(butyl acrylate) and poly(cyclohexyl methacrylate) were successfully grafted onto UHMWPE fibers with no loss in tensile properties. The surface and tensile properties of the fibers were evaluated using Fourier transform infrared/photoacoustic spectroscopy (FTIR/PAS), X-ray photoelectron spectroscopy (XPS), and tensile tests. The reinforcement efficiency of untreated, polymer-grafted, and plasma-treated UHMWPE fibers in polystyrene and a poly(styrene-co-butyl acrylate-co-cyclohexyl methacrylate) statistical terpolymer was characterized using mechanical tensile tests. The thermoplastic matrix composites were prepared with 4 wt% discontinuous (10 mm), randomly distributed UHMWPE fibers. An approximate 30% increase in composite strength and modulus was observed for poly(cyclohexyl methacrylate)-grafted fibers in the terpolymer and polystyrene matrices. A comparable improvement was realized with the plasma-treated fibers. On the other hand, poly(butyl acrylate) grafts induced void formation, i.e. energy dissipation through plastic deformation and volume expansion at the fiber/matrix interface in terpolymer composites. The latter resulted in a 75% increase in the elongation to failure. The effect of polymer grafts on fiber/matrix adhesion is discussed in terms of the graft and matrix chain interactions and solubility, graft chain mobility, and fracture surface characteristics as determined by scanning electron microscopy (SEM).  相似文献   

15.
In this article, a novel process called cylindrical-electrode-assisted solution blowing spinning (CSBS) for producing excellent quality nanofibers with simultaneous electrostatic force and air stretching is reported. The originality of this work is in a new apparatus. With a cylindrical electrode, the solution jets were noncontact charged because of electrostatic induction; this is different from traditional solution-blowing spinning (SBS). Poly(ethylene oxide) nanofibers were fabricated by the CSBS technique for the first time. The scanning electron microscopy results prove that the nanofiber mats produced by CSBS and formed by individual cylindrical-shaped fibers presented a more regular morphology than SBS ones. Compared with that of SBS fibers, the CSBS fiber diameter standard deviation decreased by 21%, and the mean diameter decreased by 6.17%. Their thinner and more uniform fibers may make CSBS fiber webs a better candidate for filtration and other uses compared with SBS ones. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47087.  相似文献   

16.
We prepared polyetherimide (PEI) hollow fiber membranes using polyvinylpyrrolidones (PVP) with different molecular weights (PVP 10,000, PVP 40,000, and PVP 1,300,000) as additives for oil/water separation. Asymmetric hollow fiber membranes were fabricated by wet phase inversion technique from 25 wt % or 30 wt % solids of 20 : 5 : 75 or 20 : 10 : 70 (weight ratio) PEI/PVP/N‐metyl‐2‐pyrrolidone (NMP) solutions and a 95 : 5 NMP/water solution was used as bore fluid to eliminate resistance on the internal surface. Effects of PVP molecular weights on morphology, oil‐surfactant‐water separation characteristics, mechanical, and thermal properties of PEI/PVP hollow fiber membranes were investigated. It was found that an increase in PVP molecular weight and percentage in PEI/PVP dope solution resulted in the membrane morphology change from the finger‐like structure to the spongy structure. Without sodium hypochlorite posttreatment, hollow fiber membranes with higher PVP molecular weights had a higher rejection but with a lower water flux. For oil‐surfactant‐water emulsion systems (1600 ppm surfactant of sodium dodecylbenzenesulfonate and 2500 ppm oil of n‐decane), experimental results illustrated that the rejection rates for surfactant, total organic carbon, and oil were 76.1 ≈ 79.8%, 91.0 ≈ 93.0%, and more than 99%, respectively. Based on the glass transition temperature values, PVP existed in hollow fiber membranes and resulted in the hydrophilicity of membranes. In addition, using NaOCl as a posttreatment agent for membranes showed a significant improvement in membrane permeability for PVP with a molecular weight of 1300 K, whereas the elongation at break of the treated hollow fiber membranes decreased significantly. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 2220–2233, 1999  相似文献   

17.
Poly(lactic acid) (PLA) fibers has been obtained by solution blow spinning (SBS) using different solvents, however most of them are toxic and can be dangerous to human health or cause harm to the environment. Therefore, this work aimed to evaluate the use of dimethyl carbonate (DMC), a greener solvent, on the production of PLA fibers by SBS using surface response analysis to evaluate and compare the influence of three solvents (chloroform, DMC, and 1,1,1,3,3,3‐hexafluoro‐2‐propanol, HFP) in the average fiber diameter. Scanning electron microscopy (SEM) was used to analyze the fiber morphology and different ranges of fiber diameter was observed when varying the solvents (chloroform: 260–970 nm; DMC: 240–650 nm; and HFP: 220–470 nm). Regression analysis showed the polymer concentration was significant for all solvents and the air pressure was significant when using chloroform and HFP. Regardless of the air pressure, increasing the PLA concentration increased the average fiber diameters for all solvents. Chloroform and HFP indicated a tendency of reduction on the average fiber diameter when the air pressure was decreased, however this behavior was not observed for DMC. It was also observed that the standard deviation indicated to be more affected by the polymer concentration than by the air pressure. The results also indicated that lower surface tension and viscosity can reduce fiber thickness. All solvents showed to be feasible to produce PLA fibers by SBS and DMC can be used to produce PLA fibers with an affordable price using a greener process. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43379.  相似文献   

18.
Results of grafting reactions of a liquid crystalline (lc) monomer onto carbon fiber surfaces are presented and compared with results of noncovalently bonded lc polymer, which is proved reproducible by scanning electron microscopy. Electro‐optical investigations under a polarizing microscope hints of the possibility of changing lc polymer and lc low molecular mass matrix molecules properties by applying a certain voltage to the carbon fibers. Wetting and electrokinetic measurements were performed and correlated with grafting reaction parameters. Those investigations revealed a nearly complete coverage of the carbon fiber surfaces by lc polymers. These measurements are suitable to characterize carbon fibers modified by grafted or coated polymers. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 71: 1893–1904, 1999  相似文献   

19.
Experimental studies of fiber wet-spinning and solution processing of films of molecular composites are presented. The rigid rod polymer was poly (p-phenylenebenzobisthiazole) (PPBT) and the flexible polymers were poly (2,5(6′)-benzimidazole) (ABPBI) and poly (2,5(6′)-benzothiazole) (ABPBT). Effects of the flexible polymer molecular entanglements in solution on the processing are discussed. These fibers and films have very high modulus and strength, which improve upon heat treatment. The uniaxial modulus of highly oriented molecular composites follows the linear rule of mixtures.  相似文献   

20.
Fibrous membranes of cellulose acetate (CA), poly(vinyl pyrrolidone) (PVP) and composite membranes of these polymers, were obtained by the electrospinning method. Using systematic method, the optimal conditions for preparation of fibrous membranes were found. Both CA and PVP a concentration of 8% weight was found. The CA was dissolved in a acetone:water solution, volume ratio 80 : 20 and the PVP is dissolved in ethanol:water solution, ratio volume 85 : 15. The flow rate for both polymers was 1.5 mL h?1. The same applied voltage value and the distance between the needle and collection plate were for polymer both, 15 kV and 15 cm respectively. The morphology of fibrous membranes and composite membranes were evaluated by scanning electron microscopy (SEM). The CA fibers showed ribon morphology, while the PVP fibers were cilindric, in both cases with diameters in the micrometer range. Thermogravimetric analysis showed that CA had a complete degradation to 445°C, while the fibrous membranes PVP required a value of temperature for degradation of up to 571°C. Fibrous composite membrane PVP/CA/PVP shows a higher value of strain at break (%), and a lower value of tensile strength (MPa) compared to CA/PVP/CA. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号