首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermo- and pH-responsive N-isopropylacrylamide (NIPAM) nanogels can be obtained by copolymerization of acrylic acid (AA) comonomer through differential microemulsion polymerization. The effects of comonomer, cross-linker, surfactant contents, and water/oil ratio were preliminarily investigated by a 24 full factorial design in order to eliminate the insignificant parameters from the polymerization analysis. The smallest poly(NIPAM-co-AA) nanogel particles were 40 ± 1 nm in diameter with 6 wt% of solid content and 98% conversion without coagulation. The comonomer amounts controlled the morphologies and LCST of the poly(NIPAM-co-AA) nanogels. The hairy microgels of poly(NIPAM-co-AA) with a 10:90 mol ratio of AA/ NIPAM had a lower critical solution temperature (LCST) of 6 °C. With an increase in the AA amount to a 17 mol ratio, the LCST increased to 27 °C, resulting in core-shell morphology. The morphology of resultant nanogels was characterized by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy, and differential scanning calorimetry. Nuclear magnetic resonance spectroscopy was used to calculate the mole ratio of NIPAM and AA in resultant nanogels after dialysis. Both nanogel mole ratio and morphology effectively retained the cationic anti-cancer drug of methylene blue for several hours, an important basic requirement for a drug delivery system. Compared to core-shell microgels, a higher methylene blue release was obtained from the hairy microgels in simulated intestinal fluid.  相似文献   

2.
Physical blends (PB) of high oleic sunflower oil and tristearin with 20 and 30% stearic acid and their interesterified (IE) products where 20 and 30% of the fatty acids are stearic acid at the sn-2 position crystallized without and with application of high intensity ultrasound (HIU). IE samples were crystallized at supercooling temperatures (ΔT) of 12, 9, 6, and 3 °C while PB were crystallized at ΔT = 12 °C. HIU induced crystallization in PB samples, but not in the IE ones. Induction in crystallization with HIU was also observed at ΔT = 6 and 3 °C for IE C18:0 20 and 30% and at ΔT = 9 °C only for the 30% samples. Smaller crystals were obtained in all sonicated samples. Melting profiles showed that HIU induced crystallization of low melting triacylglycerols (TAGs) and promoted co-crystallization of low and high melting TAGs. In general, HIU significantly changed the viscosity, G′, and G″ of the IE 20% samples except at ΔT = 12 °C. While G′ and G″ of IE 30% did not increase significantly, the viscosity increased significantly at ΔT = 9, 6, and 3 °C from 1526 ± 880 to 6818 ± 901 Pa.s at ΔT = 3 °C. The improved physical properties of the sonicated IE can make them good contenders for trans-fatty acids replacers.  相似文献   

3.
Enzymatic extraction of oil from Kalahari melon seeds was investigated and evaluated by response surface methodology (RSM). Two commercial protease enzyme products were used separately: Neutrase® 0.8 L and Flavourzyme® 1000 L from Novozymes (Bagsvaerd, Denmark). RSM was applied to model and optimize the reaction conditions namely concentration of enzyme (20–50 g kg?1 of seed mass), initial pH of mixture (pH 5–9), incubation temperature (40–60 °C), and incubation time (12–36 h). Well fitting models were successfully established for both enzymes: Neutrase 0.8 L (R 2 = 0.9410) and Flavourzyme 1000 L (R 2 = 0.9574) through multiple linear regressions with backward elimination. Incubation time was the most significant reaction factor on oil yield for both enzymes. The optimal conditions for Neutrase 0.8 L were: an enzyme concentration of 25 g kg?1, an initial pH of 7, a temperature at 58 °C and an incubation time of 31 h with constant shaking at 100 rpm. Centrifuging the mixture at 8,000g for 20 min separated the oil with a recovery of 68.58 ± 3.39%. The optimal conditions for Flavourzyme 1000 L were enzyme concentration of 21 g kg?1, initial pH of 6, temperature at 50 °C and incubation time of 36 h. These optimum conditions yielded a 71.55 ± 1.28% oil recovery.  相似文献   

4.
This work aims to produce triacylglycerols (TAG) containing a medium-chain fatty acid (M) at positions sn-1,3 and a long-chain fatty acid (L) at sn-2 position, i.e. TAG of MLM type, by acidolysis of virgin olive oil with caprylic (C8:0) or capric (C10:0) acids, catalyzed by 1,3-selective Rhizopus oryzae heterologous lipase (rROL) immobilized in Eupergit® C and modified sepiolite. This lipase was produced by the methylotrophic yeast Pichia pastoris. Reactions were performed at 25 and 40 °C, for 24 h, either in solvent-free or in n-hexane media, at a molar ratio 1:2 (olive oil:free fatty acid). Higher incorporations of C8:0 (21.6 mol%) and C10:0 (34.8 mol%) into the TAG were attained in solvent-free media, at 40 °C, when rROL immobilized in Eupergit® C was used. In organic media, at 40 °C, only 15.9 and 14.1 mol%, incorporation of C8:0 or C10:0 were, respectively observed. Lower incorporations were attained for both acids (3.4–7.0 mol%) when native ROL (nROL) in both supports and rROL in modified sepiolite were used. rROL in Eupergit® C maintained its activity during the first four or three 23-h batches, respectively when C8:0 (half-life time, t 1/2 = 159 h) or C10:0 (t 1/2 = 136 h) were used, decreasing thereafter following a time delay model.  相似文献   

5.
Design irrigation rates for treated municipal wastewater effluent (MWE) are usually determined from nitrogen (N) mass-balances, in which the fraction (f) of the total N in the MWE that is lost to the atmosphere is commonly obtained from US Environmental Protection Agency (USEPA) tabulated (design) values: 0.15–0.25 for secondary-treated effluents and 0.1 for tertiary-treated effluents. In 2011 and 2012, f values from an N balance in a tall fescue (Festuca arundinacea Schreb.) hay field in Central Pennsylvania were quantified and compared to the USEPA design f values. The grass field was spray-irrigated with MWE (C:N ratio = 0.04–0.2; near neutral pH, and 70–87% of the MWE-TN was NO3–N) at a rate of ≤5-cm wk?1. Monthly N balances were calculated from April to September in the surface horizon of a Hagerstown soil. The f values of 0.05, 0.1, and 0.2 seemed appropriate for the months of May and June, August and September, and July, respectively. Positive fnb estimates and the logarithm of measured monthly N removal in the aboveground biomass (kg ha?1) were negatively correlated (R2 = 0.99 for monthly mean air temperatures ≥20 °C and R2 = 0.2 for monthly mean air temperatures <20 °C). The study’s results suggest that existing design f values are likely less applicable especially due to the biological N-removal processes currently present in many wastewater treatment plants needing to meet effluent N limits. Thus, more studies to determine empirical f values in effluent irrigation are needed to refine design f values.  相似文献   

6.
The present study demonstrates the separation of a critical pair of conjugated linolenic acid (CLN) isomers—jacaric acid (JA; c8, t10, c12-18:3) and punicic acid (PA; c9, t11, c13-18:3)—on a 60-m conventional Supelcowax 10 column. The alkyl esters of different alcohols (C1–C8) of JA and PA were prepared and analyzed isothermally at 220, 230 and 240 °C. The adequacy of their separation was determined from the separation factors (α) and peak resolutions (R s). Acceptable resolution (R s = 1.01) of JA and PA was obtained with their 2-ethyl-1-hexyl ester derivatives at a column temperature of 230 °C. In addition, the Gibbs energy of transfer from solution to gas of the three double bonds \((\Delta_{\text{sln}}^{\text{g}} G_{\text{u}}\)) could be used to describe the interactions of the double bond with the stationary phase. Characterization of 2-ethyl-1-hexyl esters of Jacaranda mimosifolia seed oil at 230 °C demonstrates that the oil contains JA and α- and β-calendic acid as a CLN without the presence of PA. The results suggested that JA could be resolved from PA on a 60-m Supelcowax 10 column as the ethyl hexyl ester.  相似文献   

7.
8.
The structural evolution of silicon carbide phase from polycarbosilane fibers cured with iodine in air was investigated using nuclear magnetic resonance (NMR) together with in situ gas analysis up to 1400 °C by thermogravimetry coupled with mass spectroscopy (TG-MS). The investigation with solid-state 1H, 13C, and 29Si NMR analyses showed the influence of the oxygen affinity of Si atoms on the chemical structural changes of the SiOCH system during pyrolysis (up to 800 °C). In particular, the mechanism of phase segregation (SiOC?→?β-SiC?+?SiO2?+?C) in amorphous SiOC structure at 800–1250 °C was determined. Carbon in the Si–O–C networks is replaced by silicon, forming the Si-O-Si network, while the cleaved carbon atoms, which have unpaired electrons, combine, forming C=C bonds. This mechanism accounts for the structural rearrangement from O2SiC2 to O3SiC to SiO4 (from the silicon-centered standpoint, i.e., SiO2 phase), the growth of β-SiC crystallites, and the carbon clustering.  相似文献   

9.
A novel diamine 4,4′-(3-(tert-butyl)-4-aminophenoxy)diphenyl ether (4) was synthesized from 2-tert-butylaniline and 4,4′-oxydiphenol through iodination, acetyl protection, coupling reaction and deacetylation protection. Then some polyimides (PIs) were obtained by one-pot polycondensation of diamne 4 with several commercial aromatic dianhydrides respectively. They all exhibit enhanced solubility in organic solvents (such as NMP, DMF, THF and CHCl3 etc.) at room temperature. Their number-average molecular weights are in the range of (2.1–3.7)?×?104 g/mol with PDI from 2.25 to 2.74 by GPC. They can form transparent, tough and flexible films by solution-casting. The light transparency of them is higher than 90% in the visible light range from 400 nm to 760 nm and the cut-off wavelengths of UV–vis absorption are below 370 nm. They also display the outstanding thermal stability with the 5% weight loss temperature from 525 °C to 529 °C in nitrogen atmosphere. The glass transition temperatures (T g s) are higher than 264 °C by DSC. XRD results demonstrate that these PIs are amorphous polymers with the lower water absorption (<0.66%). In summary, the incorporation of tert-butyl groups and multiple phenoxy units into the rigid PI backbones can endow them excellent solubility and transparency with relatively high T g s.  相似文献   

10.
Two palladium(II) nitroaryl complexes trans-[bromo(p-nitrophenyl)bis(triphenylphosphine)palladium(II)] 1 and trans-[bromo(2,4-dinitrophenyl)bis(triphenylphosphine)palladium(II)] 2 have been synthesized. The complexes were characterized by FTIR and NMR (1H, 13C and 31P) spectroscopy and elemental analysis. The molecular structure of complex 2, as confirmed by X-ray crystallography, reveals that the Pd atom and its neighboring groups (two PPh3, Br and phenylene group) lie in a slightly distorted square plane. In the UV–Vis spectra of the complexes 1 and 2, the palladium to aryl charge transfer bands were observed. The emission peaks from the singlet excited states (S1  S0) were observed in the photoluminescence spectra of the complexes. The thermal stability of the complexes has been studied by thermal gravimetric analysis (TGA). TGA data showed that both complexes are thermally stable up to 200 °C, and complex 1 is more stable than 2. The catalytic efficiency of the new palladium(II) complexes was studied as demonstrated using the Sonogashira coupling reactions with good yields. The experimental results suggest that the Sonogashira coupling reactions can be performed at moderate temperature (50 °C) using these new palladium(II) complexes as catalysts.  相似文献   

11.
Aluminum (Al) surfaces with ultra-repellency as well as desirable robustness were designed and fabricated. With photolithographic patterning of a thick SU-8 layer and sputtering of a thin Al film, re-entrant micro-pillar textured Al surfaces were prepared. After derivatization with perfluoroalkyl phosphoric acid (FPA), the textured Al surfaces showed ultra-repellency for a wide variety of liquids. The contact angles (CAs) of deionized (DI) water, hexadecane and dodecane were larger than 150°, and those of methanol and ethanol were larger than 100°. The sliding angles (SAs) of DI water, hexadecane and dodecane were 5°, 10°, and 10°, respectively, showing excellent superamphiphobicity. The SAs of methanol and ethanol were in the range of 20°–30°. The robustness of the ultra-repellent Al surface was evaluated by three parameters: robust height (H*), robust angle (T*) and robust factor (A*). For the DI water probing, the values of the parameters are H* ≈ 403, T* ≈ 119 and A* ≈ 92, respectively, indicative of a desirable robustness. We clarified that only re-entrant structures can support composite liquid–solid–vapor interfaces when the corresponding Young’s CAs are smaller than 90°, and the function of the nanometer structures of the hierarchical textures which were widely adopted to fabricate superamphiphobic surfaces is to help construct re-entrant structures. FPA derivatization is effective in lowering the surface energy of Al surfaces, combining with re-entrant textures to provide a simple and high throughput approach to ultra-repellency for a wide variety of liquids.  相似文献   

12.
A novel, anionic fluorinated hydrophobic association polyacrylamide (FAPAM) was successfully synthesized from acrylamide (AM), 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylic acid (AA), and 1H,1H,2H,2H-heptadecafluorodecyl acrylate (HFA) by radical micellar polymerization using sodium dodecyl sulfonate and potassium persulfate as a surfactant and an initiator, respectively. This synthesis was confirmed by Fourier transform infrared and nuclear magnetic resonance spectroscopy techniques. The results showed that the optimal content of the added HFA monomer was 0.3–0.5% in weight to the as-prepared FAPAM, which possessed 300–400 mg L?1 of critical association concentration. The results also showed that the properties of FAPAM3-0.4 were best for the appropriate mass ratio of AM:AA:AMPS = 7:1:2. The apparent viscosity of FAPAM3-0.4 was 1350 mPa s in the aqueous solution, and the apparent viscosities of other samples were 161.5 and 148.3 mPa s when the Na+ and Ca2+ concentrations were 5000 and 2000 mg L?1, respectively. Moreover, the FAPAM3-0.4 showed excellent temperature resistance and shearing resistance, in which the apparent viscosity was approximately 478.8 mPa s at 100 °C for 120 min. The viscosity could be completely restored or even it could be slightly higher than its original value when the shearing rate decreased. The results indicated that the excellent performance of FAPAM3-0.4 may make it a potential candidate as thickener for hydraulic fracturing fluid in oil and gas fields.  相似文献   

13.
In this paper, polysiloxanes with pendant quaternary ammonium and polyether segments (EQAPS, nonionic–cationic silicone surfactant) were synthesized through hydrosilylation of poly(dimethylhydro)siloxane with allyl poly(ethylene glycol) acetic ester (M n  = 540) and allyl glycidyl ether, followed by a ring-opening reaction of epoxide groups with diethyl amine and quaternization with benzyl chloride. The chemical structures of EQAPS and intermediate products were characterized by 1H-NMR and FT-IR spectra. The surface activity and thermal properties of EQAPS were studied with surface tension measurement and differential scanning calorimetry analysis, respectively. The results showed that the EQAPS had a much smaller critical micelle concentration value (118 mg/L) and lower glass-transition temperature (T g: ?57 °C). The silyl-terminated polypropylene oxide waterborne emulsions, which were substantially free from organic solvent, were prepared via a phase-inversion emulsification technique using EQAPS as single emulsifier and/or poly(ethylene glycol) (\(\bar{M}\) n  = 400) as cosolvent. The electrical properties of the system indicated that the phase inversion was completely accomplished. The viscosity of the emulsions with different solid contents was measured, and the results showed that the most suitable solid content was about 50 wt%. The emulsions with smaller particle size (12 μm) had better storage stability (48 days at 50 °C) and freeze–thaw stability.  相似文献   

14.
In this work, chitin flakes were deacetylated with 50% (w/v) sodium hydroxide under nitrogen atmosphere at 120 °C for 80 min to obtain chitosan. The chitosan produced was characterized for degree of deacetylation (DD) and molecular weight. Chitosan with the DD of 78–80% was reproducibly obtained. Molecular weight showed an inverse relationship with concentration of NaOH. Chitosan nanofibrous membrane was prepared via the electrospinning of chitosan/polyvinyl alcohol (CH/PVA) aqueous solutions with varying blend compositions. The characteristics of CH/PVA nanofibrous membranes were studied as a function of viscosity of solution and applied voltage. A uniform nanofibrous membrane of average fibre diameter of 80–300 nm was obtained with blend of 2% (w/v) chitosan solution in 1% (v/v) acetic acid and 5% (w/v) PVA in distilled water in the electric field of 20–25 kV with varying proportion of CH/PVA. With the CH/PVA mass ratios; 40/60 to 10/90, electrospinning of nanofibres could be done. The electrospun nanofibrous membrane was analyzed by scanning electron microscopy (SEM), X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) and Thermo gravimetric analysis (TGA). SEM images showed that the morphology and diameter of the nanofibres were mainly affected by the weight ratio of CH/PVA. XRD and FTIR confirmed the strong intermolecular hydrogen bonding between the molecules of Chitosan and PVA.  相似文献   

15.
Lipase activity from castor bean seed powders was evaluated in hydrolysis reactions at 37 °C. The effects of different concentrations of lipase powder (LP), substrate (high oleic sunflower oil, O) and surfactant (gum arabic, A) on lipase activity (R) were assessed using experimental designs. Considered variable bounds were: 0.05–0.15 gLP, 0.07–0.20 oil:aqueous phase (w/w) and 0–0.025 g gum arabic/mL. All variables had significant effects on the transformed response, R 1/2. The most important result was the negative effect of gum arabic in lipase activity, even when high oil concentrations were used. Experimental lipase activities involved in this work were within 0.32–16.90 mmolFFA/goil·gLP·h. Using 0.05 gLP and 0.20 oil:aqueous phase (w/w) without gum arabic, the activity of 20.47 ± 7.19 mmolFFA/goil·gLP·h was reached.  相似文献   

16.
This research paper describes the development, optimization and in vitro characterization of chemically cross-linked pectin–polyvinyl alcohol-co-poly(2-Acrylamido-2-methylpropane sulfonic acid) semi-interpenetrating polymer network hydrogel [pectin–PVA-co-poly(AMPS) semi-IPN hydrogel] for controlled delivery of model drug tramadol HCl. Response surface methodology based on 32 factorial design was used for optimization and investigating the effect of independent factors: polymer-blend ratio (pectin:PVA = X 1) and monomer (AMPS = X 2) concentration on the dependent variables, swelling ratio (q 18th), percent drug release (R 18th, %), time required for 80 % drug release (t 80 %, h), drug encapsulation efficiency (DEE, %) and drug loaded contents (DLC, mg/g) in pectin-PVA-co-poly(AMPS) gels prepared by free radical polymerization. The optimized semi-IPN gel (FPP-10) showed controlled in vitro drug release (R 18th) of 56.34 % in 18 h, t 80 % of 30 h, and DEE of 23.40 %. These semi-IPN hydrogels were also characterized through SEM, FTIR, sol–gel analysis, swelling studies and drug release characteristics. Therefore, this newly synthesized polymeric network could be a potential polymeric system for controlled drug delivery of tramadol HCl for prolonged drug release.  相似文献   

17.
Copolymers of N-acryloyl-N′-methylpiperazine (AcrNMP) and 2-hydroxyethyl methacrylate (HEMA) were synthesized by free radical solution polymerization in dioxane at 70 ± 1 °C, using 2,2′-azobisisobutyronitrile (AIBN) as initiator. The copolymer compositions were analyzed by the methods of FTIR spectroscopy and elemental analysis. Both the method of analysis yielded results that agreed reasonably well. The monomer reactivity ratios of the copolymerization were determined by the linearization methods of Finemann–Ross (FR) and Kelen–Tüdös (KT). The reactivity parameter results derived using FTIR analysis showed that the copolymerization yielded mainly alternating structure with reactivity ratios, r 1(AcrNMP) = 0.263 ± 0.011 and r 2(HEMA) = 0.615 ± 0.097 by F–R method and r 1 = 0.227 ± 0.074 and r 2 = 0.53 ± 0.15 by KT method. Microstructure data calculated by the method of Igarashi also supports the alternating structure (tendency) of the copolymer. Crosslinked polymer gels of this system exhibited remarkably high swelling of more than 500% in water at ambient temperature.  相似文献   

18.
Mesoporous nickel oxide (NiO) nanoparticles were synthesized by the thermal decomposition reaction of Ni(NO3)2·9H2O using oxalic acid dihydrate as the mesoporous template reagent. The pore structure of nanocrystals could be controlled by the precursor to oxalic acid dihydrate molar ratio, thermal decomposition temperature and thermal decomposition time. The structural characteristic and textural properties of resultant nickel oxide nanocrytals were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), N2 adsorption–desorption isotherm and temperature programmed reduction. The results showed that the most excellently mesoporous nickel oxide particles (m-Ni-1-4) with developed wormlike pores were prepared under the conditions of the mixed equimolar precursor and oxalic acid and calcined for 4 h at 400 °C. The specific surface area and pore volume of m-Ni-1-4 are 236 m2 g?1 and 0.42 cm3 g?1, respectively. Over m-Ni-1-4 at space velocity = 20,000 mL g?1 h?1, the conversions of toluene and formaldehyde achieved 90 % at 242 and 160 °C, respectively. It is concluded that the reactant thermal decomposition with oxalic acid assist is a key step to improve the mesoporous quality of the nickel oxide materials, the developed mesoporous architecture, high surface area, low temperature reducibility and coexistence of multiple oxidation state nickel species for the excellent catalytic performance of m-Ni-1-4.  相似文献   

19.
Nanogels are polymeric nanoparticles that have similar characteristic to hydrogels, but have the size in nano range. The pH-sensitive nanogel have gained much interest in the field of pharmaceutical nanotechnology as they have potential to be used as nanocarriers in drug delivery system. The aim of the present study was to synthesize pH-sensitive polyelectrolyte MMA/IA nanogels using free radical polymerization containing methyl methacrylate (MMA), itaconic acid (IA), and a crosslinker ethylene glycol dimethacrylate (EGDMA). In the synthesis of nanogels four parameters i.e. ethanol/water ratios (v/v), dilution volume using ethanol/water (v/v), crosslinker EGDMA concentration, and monomers MMA/IA ratios were optimized. Their effect on particle size, PdI, zeta potential and swelling ratio were evaluated. The swelling behaviour of the nanogels was studied by measuring swelling ratio using gravimetric method. The optimized nanogels were characterized by proton nuclear magnetic resonance (1H NMR), Fourier transform infrared spectroscopy (FTIR), liquid chromatography/time-of-flight/mass spectrometry (LC-TOF-MS), X-ray powder diffraction (X-RD) and transmission electron microscopy (TEM). Polyelectrolyte characteristic was confirmed by measuring isoelectric point using aqueous electrophoresis. The in-vitro and in-vivo toxicity studies were performed by MTT assays using Caco-2 cells and Limit test using female Sprague Dawly rats, respectively. The nanogels were amorphous in nature, exhibited pH-responsive property and polyelectrolyte characteristics, which showed an isoelectric point at pH 2.78. They had an average particle size <250 nm, narrow size distribution (PdI < 0.3), and negative zeta potential. The in-vitro MTT assays indicated that the nanogels had no sign of cytotoxicity. The in vivo Limit test showed that the LD50 was greater than 2000 mg/kg body weight. The necrospy, histopathology and hematological studies also revealed no sign of toxicity. These findings suggested that the MMA/IA nanogels are pH-sensitive, non-toxic and have potential to form a polyelectrolyte complex with oppositely charged of macromolecular drugs.  相似文献   

20.
Silver-loaded micro (m) and nano (n)-sized three different low silica/alumina frameworks of Zeolite-A (ZA), Faujasite-NaX (ZX) and Analcime (ANA) were prepared from refined kaolin via microwave technique at different temperatures (80–160 °C) and durations (30 min–2 h). The properties of the parent and Ag-exchanged powders were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), and BET particle size porosimetry. The obtained results showed that, the amount of loaded (wt/wt%) silver of each zeolite depended mainly on its Si/Al ratio, specific surface area and chemical stability against the conditions of ion exchange process (70 °C/6 h). The nano-zeolites retained higher silver amounts than their micronized forms, however their minute particles suffered relative chemical instability and partial decay in the exchanging solution. The antimicrobial activities of Ag-substituted zeolites against four different test microbes Staphylococcus aureus (G+ve bacteria) Pseudomonas aeruginosa (G?ve bacteria), Candida albicans (yeast) and Aspergillus niger (fungi) were evaluated using agar plate method and recorded by measuring the diameter of the clear zones around each zeolite film. All zeolites are showing nearly the same inhibition effect againest each individual microbial species, with slight significant differences between micro and nanoforms. However, the zeolite efficiency in supressing different micropes is best expressed in the following sequence; ANA > ZX > ZA, which is the same sequence obtained for their Ag-retention ability in the bulky powders. The antimicrobial efficacy of each zeolite depended on the total amount of Ag+ loaded into pores and cavities by the cation exchange capacity (CEC), as well as those adhered onto its available surfaces by physical adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号