首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 270 毫秒
1.
This study was designed to investigate the interaction between the NO/L-arginine pathway and the alpha2-adrenoceptor-mediated endothelium-dependent vasorelaxation. Reactivity of isolated resistance mesenteric arterial segments from mice lacking the gene for constitutive endothelial NO synthase (eNOS- mice, n=14) and from their wild-type controls (WT mice, n=46) was studied in isometric conditions in the presence of indomethacin (blocker of cyclooxygenase). Oxymetazoline (OXY, 0.01 to 30 micromol/L; a selective alpha2-adrenoceptor agonist) induced an endothelium-dependent relaxation of eNOS- but not WT arteries preconstricted either with phenylephrine or serotonin. In the presence of Nomega-nitro-L-arginine (l-NNA, 100 micromol/L), an inhibitor of NOS, OXY induced an endothelium-dependent relaxation of WT mesenteric arteries. l-NNA had no effect on the relaxation caused by OXY in eNOS- arterial rings. Therefore, the relaxation caused by OXY was independent of NO formation. To demonstrate the inhibitory role of NO on the alpha2-adrenoceptor-mediated relaxation, subthreshold (0.1 nmol/L) to threshold (1 nmol/L) concentrations of sodium nitroprusside (donor of NO) were added to l-NNA-treated arteries before OXY challenges: in these conditions, the alpha2-adrenoceptor-mediated relaxation of eNOS- and WT arteries was inhibited. OXY-induced relaxation was restored on readdition of methylene blue (1 micromol/L, inhibitor of guanylate cyclase), suggesting that cGMP may be the mechanism of inhibition of the alpha2-adrenergic pathway in the presence of NO. Finally, OXY-mediated relaxation was blocked by tetraethylammonium (1 mmol/L) but not glibenclamide (1 micromol/L), suggesting the involvement of an endothelium-derived hyperpolarizing factor that activates Ca2+-activated K+ channels. In conclusion, alpha2-adrenoceptor activation caused relaxation of isolated murine mesenteric arteries that was functionally blocked by NO through a mechanism that may involve activation of the soluble guanylate cyclase and cGMP formation. The endothelium-dependent alpha2-adrenoceptor-mediated relaxation is likely to be due to an endothelium-derived hyperpolarizing factor, whose release and/or production is reduced by concurrent NO formation.  相似文献   

2.
To study the effects of chronic in vivo inhibition of NO synthase on endothelium-dependent hyperpolarization, cell-membrane potential (in individual vascular smooth-muscle cells) and changes in tension (in isolated rings) were recorded from isolated canine coronary arteries and guinea-pig carotid arteries and aortas. In coronary arteries taken from control dogs and contracted with U46619, acetylcholine- and bradykinin-induced endothelium-dependent relaxations, which were unaffected by short-term in vitro exposure to indomethacin but were inhibited partially by L-nitro-arginine (LNA). In coronary arteries taken from dogs treated over the long term in vivo with LNA (30 mg/kg on the first day and 20 mg/kg the 7 following days, i.v.), the response to acetylcholine and bradykinin was inhibited when compared with arteries from control dogs. Short-term in vitro exposure to LNA or indomethacin or both did not influence the effects of either agonist. In these arteries, the hyperpolarizing response to acetylcholine, observed in the presence of LNA and indomethacin, was enhanced, whereas that to bradykinin was partially inhibited. In the guinea pig isolated aorta, the relaxation to bradykinin was abolished by long-term in vivo treatment with L-nitro-arginine-methyl-ester (L-NAME; 1.5 mg/ml, in the drinking water for > or =4 days). In the isolated guinea pig carotid artery studied in the presence of LNA and indomethacin, acetylcholine induced a hyperpolarization that was not significantly affected by long-term in vivo treatment with L-NAME. These findings indicate that endothelium-dependent hyperpolarizations are maintained during long-term inhibition of NO synthase and probably act as a back-up mechanism to elicit endothelium-dependent relaxations.  相似文献   

3.
NO and prostacyclin formation cannot entirely account for receptor-operated endothelium-dependent dilation of coronary vessels, since vasodilator responses are not completely suppressed by inhibitors of these agents. Therefore, we considered that another factor, such as an endothelium-derived hyperpolarizing factor described in vitro, may participate in NO- and prostacyclin-independent coronary dilator responses. In conscious instrumented dogs, intracoronary acetylcholine (ACh, 30.0 ng.kg-1.min-1) increased the external epicardial coronary diameter (CD) by 0.18 +/- 0.03 mm (from 3.44 +/- 0.11 mm) when increases in coronary blood flow (CBF) were prevented and increased the CD by 0.20 +/- 0.05 when CBF was allowed to increase. After the administration of intracoronary N omega-nitro-L-arginine methyl ester (L-NAME), CBF responses to ACh were abolished, but CD responses (0.23 +/- 0.05 from 3.22 +/- 0.09 mm) were maintained. Blockade of NO formation was confirmed by reduced CD baselines and blunted flow-dependent CD responses caused by adenosine and transient coronary artery occlusions after L-NAME administration. ACh-induced CD increases resistant to L-NAME and indomethacin were reduced after the administration of intracoronary quinacrine, an inhibitor of phospholipase A2, or proadifen, an inhibitor of cytochrome P-450. Quinacrine or proadifen alone (without L-NAME) did not alter CD responses to ACh, but L-NAME given after proadifen blunted ACh-induced increases in CD. The increases in CD caused by arachidonic acid given after L-NAME + indomethacin were antagonized by proadifen but not altered by quinacrine. Thus, a cytochrome P-450 metabolite of arachidonic acid accounts for L-NAME-resistant and indomethacin-resistant dilation of large epicardial coronary arteries to ACh. Conversely, NO formation is the dominant mechanism of ACh-induced dilation after blockade of the cytochrome P-450 pathway.  相似文献   

4.
BACKGROUND: The purpose of this study was to test the hypothesis that vasodilator responses of porcine coronary resistance arteries are increased by exercise training. METHODS AND RESULTS: Yucatan miniature swine were randomly divided into groups of exercise-trained (ET) and sedentary (SED) control pigs. ET pigs were placed on a progressive treadmill training program lasting 16 to 20 weeks, and SED pigs remained inactive during the same time period. Coronary resistance arteries 64 to 157 microns in diameter were isolated for in vitro evaluation of relaxation responses to the endothelium-independent dilators sodium nitroprusside (1 x 10(-10) to 1 x 10(-4) mol/L) and adenosine (1 x 10(-10) to 1 x 10(-5) mol/L) and to bradykinin (1 x 10(-13) to 3 x 10(-7) mol/L), an endothelium-dependent agent. Relaxation responses to adenosine and sodium nitroprusside were not altered by exercise training. Endothelium-dependent relaxation to bradykinin was enhanced in coronary resistance arteries from ET pigs (IC50: ET, 0.07 +/- 0.02 nmol/L; SED, 1.59 +/- 0.09 nmol/L). To determine whether prostanoids and/or the nitric oxide synthase pathway were involved in the ET-induced changes in bradykinin-induced vasodilation, responses to bradykinin were examined in coronary resistance arteries from both ET and SED pigs in the presence of indomethacin and in the presence of nitro-monomethyl L-arginine (L-NMMA). Both indomethacin and L-NMMA produced significant inhibition of the bradykinin-induced relaxation in vessels from both groups. Despite decreased bradykinin-induced relaxation after indomethacin, bradykinin-induced vasodilation was still enhanced in vessels from the ET group. L-NMMA caused greater inhibition of the bradykinin-induced relaxation in coronary resistance arteries from ET pigs relative to arteries from SED pigs and eliminated the training-induced enhancement of the bradykinin responses. CONCLUSIONS: These results suggest that exercise training enhances bradykinin-induced vasodilation through increased endothelium-derived relaxing factor/nitric oxide production by the L-arginine/nitric oxide synthase pathway.  相似文献   

5.
In the presence of N omega-nitro-L-arginine and indomethacin, acetylcholine (ACh) induced endothelium-dependent relaxation in guinea pig coronary artery preconstricted with 9,11-dideoxy-9 alpha, 11 alpha-epoxymethano prostaglandin F2 alpha. Dexamethasone and arachidonyltrifluoromethyl ketone, inhibitors of phospholipase A2, and 17-octadecynoic acid, an inhibitor of cytochrome P450 epoxygenase, had no effect on the response to ACh. Although proadifen, which is used widely as an inhibitor of cytochrome P450-dependent enzymes, suppressed the ACh-induced relaxation, the drug also inhibited the relaxation induced by cromakalim, a K+ channel opener. In isolated smooth muscle cells of guinea pig coronary artery, proadifen, but not 17-octadecynoic acid, almost abolished delayed rectifier K+ current. Epoxyeicosatrienoic acids failed to relax the artery. Apamin and iberiotoxin, inhibitors of small- and large-conductance Ca(++)-activated K+ channels, respectively, did not affect the relaxation induced by ACh. A combination of charybdotoxin plus apamin, but not iberiotoxin plus apamin, abolished the response. However, the combination of charybdotoxin plus apamin had no effect on ACh-induced increase in intracellular free Ca++ concentration in endothelial cells. These results suggest that epoxyeicosatrienoic acids do not contribute to N omega-nitro-L-arginine/indomethacin-resistant relaxation induced by ACh in the guinea pig coronary artery. The present study also proposes that K+ channels on vascular smooth muscle cells, which both charybdotoxin and apamin must affect for inhibition to occur, are the target for endothelium-derived hyperpolarizing factor.  相似文献   

6.
BACKGROUND: Depolarizing (hyperkalemic) solutions impair the coronary endothelial function through an endothelium-derived hyperpolarizing factor mechanism. I examined the hypothesis that potassium-channel openers may restore the impaired endothelium-derived hyperpolarizing factor-mediated coronary vasorelaxation when added to hyperkalemic cardioplegia. METHODS: The porcine coronary arteries were exposed to hyperkalemia (potassium, 20 or 50 mmol/L) or hyperkalemia plus the potassium-channel opener aprikalim at 0.1 mmol/L for 1 hour. Endothelium-derived hyperpolarizing factor-mediated relaxation (percentage of 30 nmol/L U46619 precontraction) was induced by calcium ionophore A23187 and bradykinin in the presence of indomethacin (7 micromol/L) and Nomega-nitro-L-arginine (300 micromol/L). RESULTS: The endothelium-derived hyperpolarizing factor-mediated relaxation was significantly impaired by exposure to hyperkalemia (20 mmol/L: 24.9%+/-14.1% versus 88.0%+/-3.3% in control, p = 0.002 for A23187; 50 mmol/L: 40.5%+/-12.3% versus 76.5%+/-3.8%, p = 0.003 for bradykinin). This reduced relaxation was significantly recovered by addition of aprikalim into the hyperkalemic (20 mmol/L) solution in A23187 experiments (81.2%+/-4.8%, p = 0.002) but only slightly recovered when added into the higher concentration of potassium (50 mmol/L) in bradykinin experiments (56.1%+/-4.7%, p = 0.2). CONCLUSIONS: Potassium-channel openers may preserve endothelium-derived hyperpolarizing factor-mediated coronary relaxation when added to traditional hyperkalemic cardioplegia. This effect is significant when the potassium concentration is 20 mmol/L but partially lost when it reaches 50 mmol/L. This study may provide new insights into cardioprotection during open heart operations.  相似文献   

7.
1. During cardiac surgery, the heart is arrested and protected by hyperkalaemic cardioplegia. The coronary endothelium may be damaged by ischaemia-reperfusion and cardioplegia. Subsequently, this may affect cardiac function immediately after cardiac surgery and cause mortality and morbidity. 2. We investigated coronary endothelium-smooth muscle interaction after exposure to depolarizing (hyperkalaemic; K+ 20 or 50 mmol/L) and hyperpolarizing (the K+ channel opener aprikalim) cardioplegia and organ preservation solution (University of Wisconsin (UW) solution). Endothelium-dependent relaxation and hyperpolarization of the coronary smooth muscle were studied in the porcine and human large conductance and micro-coronary arteries. Intracellular free calcium concentration in endothelial cells was also measured. 3. The endothelium-derived hyperpolarizing factor (EDHF)-mediated relaxation to A23187, bradykinin, and substance P in arteries contracted by either U46619 (10 nmol/L) or K+ (25 mmol/L) was reduced after exposure to either high K+ or UW solution, but was maximally preserved after exposure to aprikalim. The hyperpolarization of the membrane potential in response to the above endothelium-derived relaxing factor stimuli was also reduced by exposure to depolarizing cardioplegia. Studies in microcoronary arteries are in accordance with findings in large arteries. The intracellular free calcium concentration remained unchanged after exposure to hyperkalaemia. 4. We concluded that: (i) during cardiac surgery, the function of coronary circulation may be changed due to exposure to depolarizing cardioplegia or preservation solutions; (ii) the functional change in the coronary circulation is related to the altered interaction between the endothelium and smooth muscle; (iii) depolarizing (hyperkalaemia) cardioplegia or hyperkalaemic organ preservation solutions affect endothelium-smooth muscle interaction through the EDHF pathway; (iv) EDHF relaxes the porcine large and microcoronary arteries through multiple K+ channels; and (v) that hyperpolarizing vasodilators (K+ channel openers) may protect EDHF-mediated endothelial function when used as cardioplegia.  相似文献   

8.
Pre- and post-menopausal women receiving oestrogen replacement therapy have a significantly reduced risk of cardiovascular disorders. It has been suggested that this protection might be partly a result of a direct relaxant effect of oestrogens on coronary arteries. This study examines and directly compares the effects of 17beta-oestradiol on rat isolated coronary and mesenteric vessels. The influence of nitric oxide on these responses was also investigated. 17Beta-oestradiol caused similar concentration-dependent relaxation of isolated coronary and mesenteric resistance arteries pre-contracted with either KCl (60 mM) or 9,11-dideoxy-11alpha,9alpha-epoxymethanoprostaglandin (U46619; 1 microM). The relaxation responses to 17beta-oestradiol were significantly reduced, but not totally inhibited, in the presence of N(omega)-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide synthase; they were not altered by indomethacin, an inhibitor of prostaglandin synthesis. The responses to 17beta-oestradiol in the presence of L-NAME were not dependent on the vessel studied or the pre-contracting agent used. These results suggest that nitric oxide might contribute to the vasodilatory effects of 17beta-oestradiol in rat isolated coronary and mesenteric resistance arteries.  相似文献   

9.
The endothelium contributes to the regulation of vascular tone by producing nitric oxide (NO) and the endothelium-derived hyperpolarising factor (EDHF). In hypercholesterolemia, endothelium-dependent relaxation is impaired but can be restored by treatment with lovastatin (LOVAS). We investigated the effects of LOVAS on NO and EDHF-mediated relaxation. Rabbits were fed 1% cholesterol diet for 4 weeks and 0.5%) cholesterol for the following 12 weeks (CHOL-group). The LOVAS group additionally received 10 mg of lovastatin over the last 12-week period. Experiments were performed in carotid artery rings. Relaxant responses to acetylcholine (ACh) were recorded in the presence of indomethacin. Nitro-L-arginine (NOARG, 100 microM) and potassium chloride (KCl, 35 mM) were used to differentiate between NO- and EDHF-mediated relaxations. Cholesterol impaired ACh-induced relaxations and this effect was prevented by LOVAS (control 100+/-1%, CHOL 81+/-6%, LOVAS 98+/-1%). In the presence of NOARG, relaxations to ACh were not different between the LOVAS and CHOL groups (control 78+/-4%, CHOL 64+/-6%, LOVAS 64+/-5%). When KCl was used, ACh-induced relaxations were similar in the LOVAS and control group (control 75+/-5%, CHOL 49+/-6%, LOVAS 76+/-2%). In arteries treated with NOARG and KCl together, no relaxations were observed. Relaxations of arteries from the control group were not affected by 18 h preincubation with lovastatin (10 microM). Lovastatin selectively maintains nitric oxide-mediated endothelium-dependent relaxation in hypercholesterolemic rabbit carotid arteries.  相似文献   

10.
Flowering-time genes modulate the response to LEAFY activity   总被引:1,自引:0,他引:1  
Angiotensin 1-7 (Ang 1-7) has been reported to induce relaxation which is partially blocked by a kinin receptor antagonist. We investigated the relationship between kinins and angiotensin peptides with use of preconstricted isolated pig coronary arteries. Ang 1-7 alone (up to 10(-5) M) had no relaxant effect. Bradykinin (BK) (10(-10)-10(-7) M) induced transient relaxation, returning to basal tone, although BK remained in the bath. In these BK-stimulated rings, Ang 1-7 but not BK (both 5 x 10(-6) M) again relaxed the rings by approximately 50%. This relaxation was blocked by a BK B2 antagonist, a kininase, and a nitric oxide synthase inhibitor. Ang 1-7 inhibited purified angiotensin-converting enzyme (ACE) by 30 +/- 3.5% (n = 4) at 10(-6) M. However, in BK-pretreated rings, the ACE inhibitor ramiprilat did not induce relaxation, nor did it affect the relaxant response to Ang 1-7, which suggests that the effect of Ang 1-7 was not caused by ACE inhibition. Ang 1-7-induced vasodilation was reduced by 69.9 +/- 6.2% by an AT2 receptor blocker, PD-123319, and 29.3 +/- 7.3% by an AT1 antagonist, losartan. Neither the nonselective AT1/AT2 receptor antagonist sarthran nor saralasin inhibited the response to Ang 1-7. Ang II did not elicit relaxation either alone or in the presence of losartan, which suggests that activation of AT2 receptors does not cause relaxation. Thus, in the presence of bradykinin, Ang 1-7 relaxes pig coronary arteries via a PD-123319-sensitive mechanism involving nitric oxide, kinins and the BK B2 receptor. The kallikrein-kinin and renin-angiotensin systems may be linked through the interaction of Ang 1-7 and BK.  相似文献   

11.
We assessed mechanisms of acetylcholine- and bradykinin-induced relaxations in human omental resistance vessels. Ring segments (approximately 200 microns normalized ID) were dissected from omental biopsies obtained from women at laparotomy (nonpregnant) or at cesarean delivery (pregnant) and were studied under isometric conditions in a Mulvany-Halpern myograph. All arginine vasopressin-preconstricted vessels relaxed in a strictly endothelium-dependent manner to acetylcholine and bradykinin; maximal relaxations were not decreased by either NG-nitro-L-arginine or indomethacin. By contrast, bradykinin failed to relax vessels that had been preconstricted with potassium gluconate. In the combined presence of NG-nitro-L-arginine and indomethacin, addition of charybdotoxin, a selective antagonist of some calcium-sensitive potassium channels, did not inhibit maximal bradykinin-induced relaxation. By contrast, addition of 10 mmol/L tetraethylammonium chloride abolished relaxation in vessels from nonpregnant women but not in vessels from gravidas. We conclude that bradykinin relaxes these human resistance arteries in an endothelium-dependent but predominantly nitric oxide- and prostanoid-independent manner; relaxation likely depends on the action of an endothelium-derived hyperpolarizing vasodilator. Furthermore, in striking contrast to mechanistic insights from animal studies, human pregnancy appears to augment a mechanism of endothelium-dependent relaxation in these vessels that is insensitive to the inhibitors noted above. Whether a similar novel vasodilator mechanism in vivo contributes to the physiological vasodilation that characterizes human gestation or whether failure of such a mechanism might lead to preeclampsia remains the subject of future study.  相似文献   

12.
Endothelial cells produce C-type natriuretic peptide (CNP), which has been proposed as an endothelium-derived hyperpolarizing factor. In porcine coronary arteries, we investigated the vasodilatory effects of CNP and compared them with endothelium-dependent relaxations and hyperpolarizations to bradykinin. Isolated epicardial porcine coronary arteries were studied in organ chambers, and concentration-response curves to CNP and bradykinin were obtained. Membrane potential was measured in endothelial cells and smooth muscle of intact porcine coronary arteries during stimulation with CNP or bradykinin. In precontracted porcine coronary arteries with or without endothelium, CNP (10[-10]-10[-6] M) evoked relaxations (maximum, 42 +/- 4%) smaller than those evoked by bradykinin (100 +/- 1%), blunted in preparations contracted by KCl instead of U46619 (9,11-dideoxy-11a,9a-epoxymethano-prostaglandin F2alpha; p < 0.05) and unaffected by inhibition of NO synthase (NS). CNP evoked hyperpolarization of vascular smooth muscle of similar magnitude in endothelium-intact (-4.4 +/- 1 mV) and endothelium-denuded (-4.6 +/- 1 mV) porcine coronary arteries. Bradykinin (10[-10]-10[-6] M) evoked concentration-dependent relaxations in preparations with endothelium only. Although atrial natriuretic peptide-receptor antagonist HS-142-1 (25 microM) slightly reduced the sensitivity to bradykinin (log shift at IC50, twofold; p < 0.05), it had no effect on the maximal response to bradykinin. Inhibition of NO synthase partially attenuated, whereas high potassium chloride (30 mM) markedly inhibited relaxations to bradykinin (p < 0.05). Hyperpolarization to bradykinin was much more pronounced than that to CNP (-17 +/- 3 mV; p < 0.05 vs. CNP) and was observed in endothelium-intact preparations only and unaffected by HS-142-1. In conclusion, in contrast to bradykinin, CNP induces endothelium-independent and weaker relaxation and hyperpolarization of coronary artery vascular smooth muscle, suggesting that CNP is an unlikely mediator of endothelium-dependent hyperpolarization of porcine coronary arteries.  相似文献   

13.
Cyclosporine A (CsA) is an immunosuppressive agent that also causes hypertension. The effect of CsA on vascular responses was determined in Sprague-Dawley rats and isolated rat aortic rings. Male rats weighing 250 to 300 g were given either CsA (25 mg. kg-1. d-1) in olive oil or vehicle by intraperitoneal injection for 7 days. CsA administration produced a 42% increase (P<0.001) in mean arterial pressure (MAP) that reached a plateau after 3 days. Conversely, the levels of both nitrate/nitrite, metabolites of nitric oxide (NO), and cGMP, which mediates NO action, decreased by 50% (P<0.001) and 35% (P<0.001), respectively, in the urine. Thoracic aortic rings from rats treated with CsA and precontracted with endothelin (10(-9) mol/L) showed a 35% increase (P<0.001) in tension, whereas endothelium-dependent relaxation induced by acetylcholine (ACh, 10(-9) mol/L) was inhibited 65% (P<0.001) compared with that in untreated rats. This response was similar to that of endothelium-denuded aortic rings from untreated rats in which ACh-induced relaxation was completely abolished (P<0.001), but relaxation induced by S-nitroso-N-acetylpenicillamine (SNAP, 10(-8) mol/L) was unaffected (P<0.001). ACh-induced formation of both nitrate/nitrite and cGMP by both denuded and CsA-treated aortic rings was inhibited 95% (P<0.001) and 65% (P<0.001), respectively, compared with intact aortic rings. The effects of CsA were reversed both in vivo and in vitro by pretreatment with L-arginine (10 mg. kg-1. d-1 IP), the precursor of NO. There were no changes in MAP and tension in rats treated with L-arginine alone. In summary, CsA inhibits endothelial NO activity, with resulting increases in MAP and tension, and this inhibition can be overcome by parenteral administration of L-arginine.  相似文献   

14.
This study was done to determine whether abnormal receptor-dependent release of endothelium-derived relaxing factor (EDRF) might be caused by G-protein dysfunction. Dogs were exposed to global myocardial ischemia (45 minutes, induced by aortic cross-clamping) followed by reperfusion (60 minutes) while on cardiopulmonary bypass, and coronary arteries were then studied in vitro in organ chamber experiments. After reperfusion, endothelium-dependent relaxation to the receptor-dependent agonists adenosine diphosphate and acetyl-choline was significantly impaired as well as to sodium fluoride, which acts on a pertussis toxin-sensitive G-protein. In contrast, endothelium-dependent relaxations to the receptor-independent agonists A23187 and phospholipase C were normal. Furthermore, endothelium-dependent relaxation to poly-L-arginine (molecular weight, 139,200), which appears to induce endothelium-dependent relaxation of the canine coronary artery by a nonnitric oxide pathway, was unaffected by ischemia and reperfusion. These experiments suggest that global myocardial ischemia and reperfusion selectively impair receptor-mediated release of EDRF (nitric oxide) but that the ability of the endothelial cell to produce EDRF or generate endothelium-dependent relaxation to nonnitric oxide-dependent agonists remains intact. We hypothesize that coronary reperfusion injury leads to G-protein dysfunction in the endothelium.  相似文献   

15.
BACKGROUND: Postoperative hypomagnesemia is common in patients who have undergone cardiac operations and is associated with clinically significant morbidity resulting from atrial and ventricular dysrhythmias. Magnesium supplementation may increase the cardiac index in the early postoperative period. METHODS: The action of the magnesium cation on coronary vascular reactivity was studied. Segments of canine epicardial coronary artery were suspended in organ chambers to measure isometric force (95% O2/5% CO2, 37 degrees C). RESULTS: In coronary segments constricted with prostaglandin F2alpha (2 x 10[-6] mol/L), acetylcholine and adenosine diphosphate (10[-9] to 10[-4] mol/L) induced vasodilation in arteries with endothelium (n=10, each group; p < 0.05). Acetylcholine-mediated vasodilation was blocked by NG-monomethyl-L-arginine (10[-4] mol/L) and NG-nitro-L-arginine (10[-4] mol/L), two inhibitors of nitric oxide synthesis from L-arginine (n=10, p < 0.05). The removal of magnesium from the organ chamber solution impaired vasodilation in response to acetylcholine and adenosine diphosphate. However, normal endothelium-dependent vasodilation could be restored by return of magnesium to the bathing solution. Vascular relaxation in response to bradykinin (10[-9] to 10[-6] mol/L), which was found to induce endothelium-dependent vasodilation independent of nitric oxide production, was unaffected by magnesium removal (n=10). CONCLUSIONS: Hypomagnesemia selectively impaired the release of nitric oxide from the coronary endothelium. Because nitric oxide is a potent endogenous nitro-vasodilator and inhibitor of platelet aggregation and adhesion, hypomagnesemia could promote vasoconstriction and coronary thrombosis in the early postoperative period.  相似文献   

16.
Electrical field stimulation (EFS) produced relaxation of contracted arteries in the presence of tetrodotoxin. In the present study the contributions of vascular smooth muscle repolarization and endothelial release of nitric oxide to the relaxation response were investigated using isolated rat tail arteries and bovine aortic endothelial cells (BAEC). Intact and endothelium-denuded rings or intact, pressurized artery segments were contracted with either phenylephrine or KCl prior to EFS. Electrical field stimulation induced a small relaxation in denuded, phenylephrine contracted rings that was inhibited by the K+ channel blockers glibenclamide and BaCl2. In intact, phenylephrine-contracted rings, EFS induced significantly larger relaxations that were inhibited by BaCl2 as well as by L-NAME, an inhibitor of nitric oxide (NO) synthase, and methylene blue. EFS-induced relaxations were completely inhibited when BaCl2 and L-NAME or methylene blue were combined. Exposure to Ca(2+)-free buffer or diltiazem also inhibited the relaxation while ascorbic acid had no effect. Effluent from electrically stimulated BAEC caused denuded, phenylephrine contracted rings to relax. The ability of the effluent to cause relaxation was almost completely blocked by exposure of the BAEC to L-NAME or exposure of the recipient vascular smooth muscle to methylene blue; glibenclamide caused partial blockade. Simultaneous measurements of membrane potential and intraluminal pressure showed that EFS-induced membrane repolarization preceded changes in steady-state pressure. It is concluded that (1) the smooth muscle cells possess an endothelium-independent repolarization mechanism, (2) EFS causes endothelial cells of intact arteries to release NO and possibly a hyperpolarizing factor, (3) EFS of BAEC causes release of NO, and (4) EFS-induced relaxation depends on vascular smooth muscle cell membrane repolarization and endothelial cell release of vasoactive substances.  相似文献   

17.
1. Previous studies have shown that endothelium-dependent relaxation in the aorta of spontaneously diabetic bio bred rats (BB) is impaired. 2. We have investigated noradrenaline (NA) contractility, endothelium-dependent acetylcholine (ACh) and bradykinin (BK) relaxation, and endothelium-independent sodium nitroprusside (SNP) relaxation in mesenteric resistance arteries of recent onset BB rats and established insulin treated BB rats, compared to their age-matched non diabetic controls. 3. There was no significant difference in the maximum contractile response or sensitivity to noradrenaline in either of the diabetic groups compared to their age-matched controls. 4. Incubation with the nitric oxide synthetase inhibitor NG-nitro-L-arginine (L-NOARG) resulted in a significant increase in maximum contractile response to noradrenaline in the recent onset age-matched control group (P < 0.05). Analysis of the whole dose-response curve (using ANOVA for repeated measures with paired t test) showed a significant left-ward shift following the addition of L-NOARG (P < 0.001). A similar but less marked shift (P < 0.01) was evident in vessels from recent onset diabetics. An overall shift in both sensitivity and maximum response was also evident in the age-matched non diabetic controls of the insulin-treated group (P < 0.05). However, by contrast, there was no significant change in sensitivity in the insulin-treated diabetic rats. 5. ACh-induced endothelium-dependent relaxation was significantly impaired in the recent onset diabetic rats compared to their age-matched controls (47 +/- 11% versus 92 +/- 2%, P < 0.05, n = 6), and in the insulin treated diabetic rats (34 +/- 5% versus 75 +/- 6%, P < 0.05, n = 6). The relaxation responses to BK also were significantly impaired in the diabetic rats compared to their age-matched controls (recent onset: 20 +/- 3% versus 72 +/- 7%, P < 0.05, n = 6; insulin treated: 12 +/- 9% versus 68 +/- 7%, P < 0.05, n = 7). 6. Incubation with either the nitric oxide synthetase substrate, U-arginine, or the free radical scavenging enzyme superoxide dismutase (150 mu ml-1) failed to improve the attenuated response of acetylcholine-induced relaxation in the diabetic vessels. 7. Endothelium-dependent relaxation mediated by ACh and BK was significantly attenuated in both the diabetic and control vessels after incubation with L-NOARG. 8. Pretreatment with a cyclo-oxygenase inhibitor, indomethacin, significantly enhanced the relaxation to ACh in both the recent onset and insulin treated diabetic rats (42 +/- 10%, n = 7 versus 64 +/- 7%, n = 7, P < 0.05, and 40 +/- 5%, n = 7 versus 65 +/- 9%, n = 6, P < 0.05). 9. Following endothelium removal, there was a marked impairment in endothelium-dependent relaxation responses to ACh and BK in both the diabetic and control vessels. 10. Incubation with the thromboxane A2 receptor antagonist SQ29548, did not significantly improve the ACh endothelium-dependent relaxation response in the diabetic vessels. 11. Endothelium-independent relaxation to sodium nitroprusside was significantly impaired in the first group of diabetic vessels studied; however, subsequent studies showed no impairment of the sodium nitroprusside response in the diabetic vessels. 12. In conclusion, the ability of the endothelium to regulate vascular contractility is reduced in recent onset diabetic vessels, and significantly impaired in established insulin treated diabetics. Relaxation to the endothelium-dependent vasodilators ACh and BK was impaired in both the recent onset and the established insulin treated diabetics, and the ACh response was significantly improved following pretreatment with indomethacin, suggesting a role for a cyclo-oxygenase-derived vasoconstrictor. Preliminary studies with a thromboxane A2, receptor antagonist, SQ29548 did not significantly improve the impaired relaxation to ACh, indicating that the vasoconstrictor prostanoid is not thromboxane A2.  相似文献   

18.
The present study determined the vasomotor effects of oxidized low-density lipoprotein (ox-LDL) in human saphenous veins and determined whether decreased availability of L-arginine was responsible for the impaired endothelial function. Human saphenous veins were obtained from white males undergoing coronary bypass surgery. We examined the effects of ox-LDL on ACh-induced endothelium-dependent relaxation, sodium nitroprusside-induced endothelium-independent relaxation and 5-HT-induced contraction. ACh-induced vasorelaxation in the presence of L-arginine and ox-LDL was also examined. In addition, we assessed the endothelial influence on the contractile response to 5-HT. ox-LDL significantly inhibited ACh-induced relaxation but did not affect sodium nitroprusside-induced relaxation. L-Arginine pretreatment did not prevent ox-LDL-induced impairment of the relaxation response to ACh. ox-LDL significantly potentiated 5-HT-induced contraction at concentrations between 3 x 10(-6) M and 10(-4) M, an effect that was endothelium-dependent. Denudation of endothelium also significantly enhanced the contractile response to 5-HT. These data suggest that ox-LDL impairs ACh-induced endothelium-dependent relaxation and enhances 5-HT-induced endothelium-dependent contraction in human saphenous vein. L-Arginine deficiency is not responsible for the endothelial dysfunction induced by ox-LDL in human saphenous vein.  相似文献   

19.
The participation of nitric oxide and vasoactive intestinal peptide (VIP) in the neurogenic regulation of bovine cerebral arteries was investigated. Nitrergic nerve fibers and ganglion-like groups of neurons were revealed by NADPH-diaphorase staining in the adventitial layer of bovine cerebral arteries. NADPH diaphorase also was present in endothelial cells but not in the smooth muscle layer. Double immunolabeling for neuronal nitric oxide synthase and VIP indicated that both molecules co-localized in the same nerve fibers in these vessels. Transmural nerve stimulation (200 mA, 0.2 milliseconds, 1 to 8 Hz) of endothelium-denuded bovine cerebral artery rings precontracted with prostaglandin F2 alpha, produced tetrodotoxin-sensitive relaxations that were completely suppressed by NG-nitro-L-arginine methyl ester (L-NAME) and by the guanylyl cyclase inhibitor 1H-[1,2,4]oxadiazolo[4,3-a]quinoxaline (ODQ), but were not affected by the adenylyl cyclase inhibitor 9-(tetrahydro-2-furanyl)-9H-purin-6-amine (SQ 22,536), nor by VIP tachyphylaxis induced by pretreatment with 1 mumol/L VIP. Transmural nerve stimulation also elicited increases in intracellular cyclic GMP concentration, which were prevented by L-NAME, and small decreases in intracellular cyclic AMP concentration. Addition of VIP to bovine cerebral artery rings without endothelium produced a concentration-dependent relaxation that was partially inhibited by L-NAME, ODQ, and SQ 22,536. The effects of L-NAME and SQ 22,536 were additive. VIP induced a transient increase in intracellular cyclic GMP concentration, which was maximal 1 minute after VIP addition, when the highest relaxation rate was observed, and which was blocked by L-NAME. It is concluded that nitric oxide produced by perivascular neurons and nerve fibers fully accounts for the experimental neurogenic relaxation of bovine cerebral arteries and that VIP, which also is present in the same perivascular fibers, acts as a neuromodulator by activating neuronal nitric oxide synthase.  相似文献   

20.
Many drugs cannot be dissolved in distilled water and so other solvents such as ethanol, dimethylsulphoxide and methanol are used. Because very little is known about the direct effects of these three solvents on the cardiovascular system, we have examined their effects on isolated pulmonary and coronary arteries from the pig. Increasing concentrations of ethanol, dimethylsulphoxide and methanol induced relaxation in porcine pulmonary (at 1.2% v/v, 59.9+/-9.0% (n =9), 55.9+/-9.0% (n =6) and 12.3+/-6.4% (n = 8), respectively, of U46619-induced tone) and coronary arteries (at 1.2% v/v, 69.9+/-7.1% (n = 10), 78.9+/-6.1% (n = 7) and 12.9+/-8.2% (n = 6) respectively, of U46619-induced tone). In the pulmonary arteries the relaxation in response to ethanol was found to be endothelium-dependent whereas the responses to dimethylsulphoxide and methanol were unaffected by removal of the endothelium. In the coronary arteries the relaxation to all three solvents was independent of the presence of the endothelium. Comparison of the sensitivity of the tissues to the solvents showed that ethanol and dimethylsulphoxide produced comparative responses in both the pulmonary and coronary arteries, whereas methanol was much less potent. The endothelium-dependent response to ethanol in the porcine pulmonary artery (maximum response, Emax, 67.1+/-9.3% of U46619-induced tone, n = 7) was attenuated by the cyclooxygenase inhibitor, flurbiprofen (Emax 31.9 +/- 12.0%, n=7), the nitric oxide synthase inhibitor, L-NAME (NG-nitro-L-arginine methyl ester; Emax 23.5+/-10.2%, n = 7)) and the combination of both inhibitors (Emax 18.3+/-7.8%, n = 7). The residual relaxatory response to ethanol was abolished, and converted into a contractile response, both by removal of the endothelium (at 1.7% v/v ethanol 27.3+/-11.5% of U46619-induced tone, n=7) and by the addition of a low concentration of KC1 (49.9-/+10.3%, n=6), suggesting the release of a non-prostanoid, non-nitric oxide factor from the endothelium. This response, however, was not attenuated by the cannabinoid receptor-antagonist SR141716A (N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-me thyl-1H-pyrazole-3-carboxamide HCL; 52.5-/+4.3% relaxation, n =8), suggesting that the factor released in this preparation by ethanol is not a cannabinoid. The results of this study indicate that many solvents commonly used in pharmacological experiments have pronounced vasoactive properties. Methanol might be the vehicle of choice, because it was the least active solvent, whereas high concentrations of ethanol might influence vascular function at both the level of the smooth muscle and the endothelium, with the action on the endothelium involving the release of endothelium-derived relaxing factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号