首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the analysis of optimal locations of framed‐tube structures with outriggers is conducted with the uniform and nonuniform core and peripheral columns using genetic algorithm, aiming to minimize the interstory drift. Also, comparison and difference of the results between the uniform and nonuniform structures are carried out and discussed. Besides, several parameters which influence the behavior of the structure are identified and analyzed, such as different objective functions, segments of outriggers, thickness of core wall, stiffness of outriggers, and grade of concrete strength. In addition, a Matlab program is written to perform the parameter analysis of optimal location of outriggers. Take a 260‐m high‐rise building as a target building, the optimal locations of one to two sets of outriggers subjected to three kinds of horizontal loadings (uniform, parabolic, and triangular) are obtained and can be utilized for the structural preliminary design of tall buildings.  相似文献   

2.
An optimal drift design model for a linear multi‐story building structure under dynamic lateral forces is presented. The drift design model is formulated into a minimum weight design problem subjected to constraints on stresses, the displacement at the top of a building, and inter‐story drift. The optimal drift design model consists of three main components: an optimizer, a response spectrum analysis module, and a sensitivity analysis module. Using a small example, the validation of the proposed model has been tested by a comparison of optimal solutions. Then, the performance of the optimal drift design model is demonstrated by application to three steel frame structures including a 40‐story building. Various structural responses including lateral displacement and inter‐story drift distributions along the height of the structure at the initial and final design stages are presented in figures and tables. Time‐consuming trial‐and‐error processes related to drift control of a tall building subjected to lateral loads is avoided by the proposed optimal drift design method. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

3.
The relatively large number of structural elements and the variety of design code requirements complicate the design process of tall buildings. This process is exacerbated when the target is to obtain the seismic code‐compliant optimal design with minimum weight. The present paper aims at providing a practical methodology for the optimal design of steel tall building structures considering the constraints imposed by typical building codes. The applicability of the proposed approach is demonstrated through the determination of the optimal seismic design for 20‐, 40‐, and 60‐story buildings with a framed tube as well as a tube‐in‐tube system. Such a design gives rise to a basis for the fair comparison of the behavior of the framed tube with that of the tube‐in‐tube system under applied loads. The optimal weight of the buildings with the tube‐in‐tube system turns out to be slightly less than that of the buildings with the conventional framed‐tube system.  相似文献   

4.
The optimum designs of multi‐outriggers in tall building structures are presented and discussed in this paper, through the analysis of structural performance of outrigger‐braced frame‐core structures. The influences of the locations of outriggers and the variations of structural element stiffness on the base moment in core, top drift and fundamental vibration period of such tall building structures are analysed in detail. A non‐linear optimum design procedure for reducing the base moment in the core is presented based on the penalty function method. The computer programs are developed on the basis of the proposed methods for analysing the behaviour and optimum design of multi‐outrigger structures. A series of figures presented in this paper can be used for the design purposes of outrigger‐braced tall building structures. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

5.
Damped outriggers for tall buildings draw increasingly attentions to engineers. With a shaking table test, two models of a high‐rise steel column‐tube structure are established, one with outriggers fixed to the core and hinged at the columns, whereas the other's cantilevering outriggers are connected to columns by viscous dampers. According to their dynamic properties, five earthquake waves are selected from the Ground Motion Database of Pacific Earthquake Engineering Research Center (PEER), and two artificial waves are generated by software SIMQKE_GR. Under various peak ground accelerations (PGAs), nonlinear time‐history analysis is applied to compare structural elastic seismic responses, including accelerations, inter‐story drifts, base shear force, damper's response and additional damping ratios. It is concluded that under minor earthquakes, accelerations, inter‐story drifts and base shear force of structure with damped outriggers are larger than or nearly equal to those of the one with fixed outriggers, and the viscous dampers hardly work. But as PGA increases, the contrary situation happens, and the effect of viscous dampers is enhanced as well. The additional damping ratio reaches around 4% under mega earthquakes. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
In super high‐rise buildings with varying story heights, the wind‐induced inter‐story drifts might violate the specified limit. However, these effects have seldom been concerned in wind‐induced response analysis. The theory and application of equivalent static wind load (ESWL) for wind‐induced inter‐story drifts of super high‐rise buildings were studied in this paper. A spectral decomposition method suitable for multi‐point excitation problems was firstly proposed. The formula of ESWL targeting for largest inter‐story drift was derived. For more reasonable structural design, the ESWL for multiple targets including displacement atop of building and inter‐story drifts at all story levels is put forward, in which the dominant modal inertial forces are adopted as the based load vectors. The presented methods were finally verified by its application for the wind‐induced response analysis for a tallest super tall building in Guangzhou. The researched results showed that the proposed spectral decomposition method not only has the same precision as the complete quadratic combination method but also possesses higher computation efficiency. The ESWL for multiple targets produces the same static responses for all the specified wind‐induced response, so it is much more rational for wind‐resistant structural design. Meanwhile, it is more reasonable to select the wind‐induced responses in the same direction simultaneously as the targeted values for obtaining the required ESWLs; however, the ESWL targeting for the wind‐induced responses in all degrees of freedom would generate more queer and unrealistic ESWLs distribution. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

7.
Steel‐framed modular buildings afford certain advantages, such as rapid and high‐quality construction. However, although steel‐framed modules have been adopted in several countries, most of them are limited to low‐to‐medium‐rise structures; modular high‐rise buildings are rare. This study proposes a feasible structural design solution for high‐rise buildings using a steel‐framed modular system. A 31‐story student hostel building in Hong Kong is redesigned as a steel‐framed modular building and used as a case study. The finite element models of the building are formulated, and the structural behaviors under wind and earthquake load scenarios are compared. Moreover, the structural design process used for the 31‐story building is applied to design a hypothetical 40‐story modular building to further examine the proposed design solution. The numerical analysis results indicate that the roof lateral displacements and interstory drift ratios of the redesigned modular building are within the allowable limits of design codes; moreover, the modular connections behave elastically under the most adverse loading scenarios. Accordingly, the proposed solution can be used to design steel‐framed modular buildings of up to 40 stories, while complying with relevant wind and seismic codes.  相似文献   

8.
The robustness of base‐isolated high‐rise buildings is investigated under code‐specified ground motions. Friction‐type bearings are often used in base‐isolated high‐rise buildings to make the natural period of those buildings much longer. While additional damping can be incorporated into every story in passive controlled structures with inter‐story type passive members, that can be incorporated into the base‐isolation story only in the base‐isolated building. This fact leads to the property that, as the number of stories of the building becomes larger, the damping ratio reduces. This characteristic may cause some issues in the evaluation of robustness of base‐isolated high‐rise buildings. The purpose of this paper is to reveal the robustness of base‐isolated high‐rise buildings. A kind of inverse problem for the target drift in the base‐isolation story is formulated in order to determine the required quantity of additional viscous damping. It is demonstrated numerically that, as the base‐isolated building becomes taller, the damping ratio becomes smaller and the ratio of the friction‐type bearings in the total damping becomes larger. This may lead to the conclusion that base‐isolated high‐rise buildings have smaller robustness than base‐isolated low‐rise buildings. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
This paper presents an integrated procedure for wind‐induced response analysis and design optimization for rectangular steel tall buildings based on the random vibration theory and automatic least cost design optimization technique using Micro‐Genetic Algorithm (GA). The developed approach can predict wind‐induced drift and acceleration responses for serviceability design of a tall building; the technique can also provide an optimal resizing design of the building under wind loads to achieve cost‐efficient design. The empirical formulas of wind force spectra obtained from simultaneous measurements of surface pressures on various rectangular tall building models in wind tunnel tests are verified testified using a published example. Upon the known wind force spectra, the equivalent static wind loads for every storey, such as along‐wind, across‐wind and torsional loads, are then determined and applied for structural analysis including estimation of wind‐induced responses. An improved form of GAs, a Micro‐GA, is adopted to minimize the structural cost/weight of steel buildings subject to top acceleration and lateral drifts constraints with respect to the discrete design variables of steel section sizes. The application and effectiveness of the developed integrated wind‐induced response analysis and design optimization procedure is illustrated through a 30‐storey rectangular steel building example. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
The seismic design of optimal damped outrigger structures relies on the assumption that most of the input energy will be absorbed by the dampers, whilst the rest of the structure remains elastic. When subjected to strong earthquakes, nevertheless, the building structure may exhibit plastic hinges before the dampers begin to work. In order to determine to which extent the use of viscously damped outriggers would avoid damage, both the host structure's hysteretic behaviour and the dampers' performance need to be evaluated in parallel. This article provides a parametric study on the factors that influence the distribution of seismic energy in tall buildings equipped with damped outriggers: First, the influence of outrigger's location, damping coefficients, and rigidity ratios core‐to‐outrigger and core‐to‐column in the seismic performance of a 60‐story building with conventional and with damped outriggers is studied. In parallel, nonlinear behaviour of the outrigger with and without viscous dampers is examined under small, moderate, strong, and severe long‐period earthquakes to assess the hysteretic energy distribution through the core and outriggers. The results show that, as the ground motion becomes stronger, viscous dampers effectively reduce the potential of damage in the structure if compared to conventional outriggers. However, the use of dampers cannot entirely prevent damage under critical excitations.  相似文献   

11.
For the seismic design of tall building structures, the behavior under severe earthquakes should be carefully considered and the upper limit of inter‐story deformations are often defined by the design codes. To improve the performance of structures under severe earthquakes, composite structural members, including steel reinforced column and steel plate reinforced shear wall, are often adopted. In the present work, the seismic behavior of tall buildings using steel–concrete composite columns and shear walls is investigated numerically. Fiber beam–column element models and multilayer shell models are adopted to establish the finite element model of structure, and the material nonlinearities are described by the plasticity and damage models. The accuracy of the developed models is verified by the experimental results of a single shear wall. Systematic numerical simulations are performed for the tall building structures subjected to different earthquakes. The comparative study indicates that the nonlinear redistribution of internal forces plays a very important role for the performance of tall buildings under severe earthquakes.  相似文献   

12.
This paper presents a Drift Design Structural Model (DDSM) for the design optimization of high‐rise buildings in seismic zones. The model is formulated as a Generalized Single Degree of Freedom System subjected to equivalent static seismic loadings. The model objectives are: (a) the minimization of the structure weight; (b) the minimization of the structure top drift; and (c) the uniform distribution of the inter‐story drifts over the building height in order to minimize earthquake damage through the increase in plastic ductility. Seven high‐rise buildings were analysed in order to validate the model, to illustrate its use and to demonstrate its capabilities in structural design optimization in earthquake zones. The results obtained show that the DDSM performed well and consequently can be of practical value to structural designers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
Many steel–concrete hybrid buildings have been built in China. The seismic performance of such hybrid system is much more complicated than that of steel structure or reinforced concrete (RC) structure. A steel–concrete hybrid frame‐tube super‐tall building structure with new type of shear walls to be built in a district of seismic intensity 8 in China was studied for its structural complexity and irregularity. Both model test and numerical simulation were applied to obtain the detailed knowledge of seismic performance for this structure. First, a 1/30 scaled model structure was tested on the shaking table under different levels of earthquakes. The failure process and mechanism of the model structure are presented here. Nonlinear time‐history analysis of the prototype structure was then conducted by using the software PERFORM‐3D. The dynamic characteristics, inter‐story drift ratios and energy dissipation conditions are introduced. On the basis of the comparison between the deformation demand and capacity of main structural components at individual performance level under different earthquake level, the seismic performance at the member level was also evaluated. Despite the structural complexity and code‐exceeding height, both experimental and analytical results indicate that the overall seismic performance of the structure meet the requirements of the Chinese design code. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

14.
Structural design of a 50‐story tall reinforced concrete residential building, which was planned to be constructed in Istanbul and given up afterwards by the investor, has been completed in accordance with the draft version of Seismic Design Code for Tall Buildings in Istanbul that adopts performance‐based seismic design as the basic approach as Tall Buildings Initiative Guidelines do. Seismic design of the building has formed the main part of the structural design process due to high seismicity of the proposed location and extremely irregular floor plan not conforming to usual tall building structures. The building consists of two individual buildings linked through sky floors at the top 12 stories whose design was one of the most challenging works. The building has been designed for design basis earthquake by elastic response spectrum analysis, and its seismic performance has been checked for maximum considered earthquake by nonlinear time‐history analyses carried out using PERFORM‐3D. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The outrigger system has been widely adopted as an efficient structural lateral‐load resisting system for super‐tall buildings in recent years. Although the outrigger system has many structural advantages, it has a significant defect due to differential shortening, which cannot be neglected. Due to the shrinkage and creep of concrete, as well as the differential settlement of foundation, the shortening of the structural member is an important time‐dependent issue, which leads to additional forces in the outriggers after the lock‐in of the outriggers. As a result, it will increase the size of the structural member cross section in the design. In a real project, engineers can delay the lock‐in time of the outrigger system to release the additional forces caused by the differential shortening during the construction phase. The time‐dependent actions, such as the column shortening and the differential settlement of the foundation, were estimated. A mega frame steel structure was employed to illustrate the analysis and design of the outrigger under the time‐dependent actions. Furthermore, a simple optimal method, considering the structural stability and overall stiffness, was proposed to optimize the construction sequence of the outrigger system.  相似文献   

16.
In this paper, the governing equations of wall‐frame structures with outriggers are formulated through the continuum approach and the whole structure is idealized as a shear–flexural cantilever with rotational springs. The effect of shear deformation and flexural deformation of the wall‐frame and outrigger trusses are considered and incorporated in the formulation of the governing equations. A displacement‐based one‐dimensional finite element model is developed to predict lateral drift of a wall‐frame with outriggers under horizontal loads. Numerical static results are obtained and compared with previously available results and the values obtained from the finite element package MIDAS. The proposed method is found to be simple and efficient, and provides reasonably accurate results in the early design stage of tall building structures. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
A series of large‐scale shaking table tests are conducted on tall buildings with and without energy dissipation devices on soft soils in pile group foundations, representing pile‐soil‐structure interaction (PSSI) system and the corresponding fixed‐base situations. The superstructure is a 12‐story reinforced concrete (RC) frame. The dynamic characteristics of the test models show that the frequencies decrease and the damping ratio increase in PSSI system by comparison with the fixed‐base structures. The mode shapes of PSSI system are different from that under fixed‐base condition, and the mode shapes of structure without dampers change greater than that with energy dissipation devices under various white noises. An improved method for structural dynamic characteristics, considering the impedance function of piles, is developed to address the issue of modal parameters with PSSI effect. In addition, the structural dynamic parameters of the large‐scale shaking table tests are identified using the modification method and other regulation methods, demonstrating that the improved approach is highly accurate and effective. Subsequently, a design procedure for viscous dampers of structures with PSSI effect is presented based on the dynamic characteristics of the system. Finally, the dynamic responses of the structure with viscous dampers in the practical engineering are decreased effectively, indicating the good performance of designed viscous dampers. The numerical results also show that the damping efficiency of interstory drift is larger than the acceleration and interstory shear force. Therefore, the improved modal parameters method, validated through a series large‐scale shaking table tests, is applicable for identifying dynamic characteristics of pile‐soil‐structure with energy dissipation devices system. The design procedure of viscous dampers, proved by a reinforced concrete frame structure located on a practical Shanghai soft site, can be employed to design the viscous dampers considering seismic PSSI effect.  相似文献   

18.
Due to its advantages, the outrigger braced system has been employed in high‐rise structures for the last 3 decades. It is evident that the numbers and locations of outriggers in this system have a crucial impact on the performance of high‐rise buildings. In this paper, a multiobjective genetic algorithm (MGA) is applied to an existing mathematical model of outrigger braced structures and a practical project to achieve Pareto optimal solutions, which treat the top drift and core base moment of a high‐rise building as 2 trade‐off objective functions. MATLAB was employed to explore a multiobjective automatic optimization procedure for the optimal design of outrigger numbers and locations under wind load. In this research, various schemes for the preliminary stages of design can be obtained using MGA. This allows designers and clients easily to compare the performance of structural systems with different numbers of outriggers in different locations. In addition, design results based on MGA offer many other benefits, such as diversity, flexible options for designers, and active client participation.  相似文献   

19.
To evaluate the major differences between the Chinese and the United States (US) seismic design codes from a structural system viewpoint, a comparative case study is conducted on a tall frame‐core‐tube building, a typical type of reinforced concrete system widely constructed in both countries. The building, originally designed using the US seismic design code, is firstly redesigned according to the Chinese seismic design code based on the information provided by the Pacific Earthquake Engineering Research Center. Secondly, the member dimensions, the dynamic characteristics, the seismic design forces and the material consumptions of the two designs are compared in some detail. Subsequently, nonlinear finite element models of both designs are established to evaluate their seismic performances under different earthquake intensities. Results indicate that the seismic design forces determined by the Chinese response spectrum are larger than those determined by the US spectrum at the same seismic hazard level. In addition, the upper‐bound restriction for the inter‐story drift ratio is more rigorously specified by the Chinese code. These two aspects have led to a higher level of material consumption for a structure designed by the Chinese code. Despite of the above discussions, the two designs yield roughly similar structural performances under earthquakes. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
This paper presents an efficient, computer‐based technique for the optimum drift design of tall reinforced concrete (RC) buildings including non‐linear cracking effects under service loads. The optimization process consists of two complementary parts: an iterative procedure for the non‐linear analysis of tall RC buildings and a numerical optimality criteria (OC) algorithm. The non‐linear response of tall RC buildings due to the effects of concrete cracking is obtained by a series of linear analyses, the so‐called direct effective stiffness method. In each linear analysis, cracked structural members are first identified and their stiffness modified based on a probability‐based effective stiffness relationship. Stiffness reduction coefficients are introduced as measures of the remaining stiffness for structural elements after cracking. A rigorously derived OC method is developed to solve for the minimum weight/cost design problem subject to multiple drift constraints and member sizing requirements. A shear wall‐frame example is presented to illustrate the application of this optimal design method. The design results of the optimized structure with cracking effects are compared to those of the linear‐elastic structure without concrete cracking. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号