首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
三类钢板剪力墙结构试验研究   总被引:6,自引:0,他引:6  
防屈曲钢板剪力墙已被试验证明是优秀的抗侧耗能构件,但墙板嵌入受弯框架时,二者之间的相互作用尚需进一步研究。为此进行了两层单跨钢框架内嵌防屈曲钢板剪力墙的试验研究,作为比较同时进行了两层单跨钢框架内嵌非加劲钢板剪力墙与两层单跨钢框架内嵌组合钢板剪力墙结构的试验研究。在试验的基础上,对试件进行有限元分析,比较了三类钢板剪力墙之间的性能差异。研究表明,防屈曲钢板剪力墙能够消除无加劲钢板剪力墙在水平荷载下产生的巨大屈曲噪声,具有较大的初始刚度与承载力,拥有良好的延性与滞回耗能性能,而且由于其屈服先于屈曲发生,对周边框架产生的附加弯矩很小;组合钢板剪力墙的性能与防屈曲钢板剪力墙相似,但由于后期外包的混凝土发生脱离,内嵌钢板剪力墙会产生拉力带,不仅对框架产生不利影响,而且自身承载力、刚度与耗能能力均有不同程度的退化。图32表1参12  相似文献   

2.
钢板剪力墙的发展与研究现状   总被引:32,自引:2,他引:32  
介绍了一种新型的高层抗侧力结构体系———钢板剪力墙 ,总结了其在工程上的应用以及在大震中的良好表现。对不同形式的钢板剪力墙 ,即非加劲钢板墙、加劲钢板墙、开竖缝钢板墙、组合钢板墙及低屈服点钢板墙的构造特点及工作性能分别加以说明 ,并介绍它们在实际工程中的应用。概括了加劲和非加劲钢板墙在单向静力荷载和往复荷载下的受力特性及国外相关的设计理论和规范。  相似文献   

3.
An analytical model of the unstiffened steel plate shear wall (SPSW) considering precompression from the adjacent frame columns is proposed and experimentally verified. First, the distribution and transferring of the gravity loads between boundary columns and the infill steel plate was proposed. Second, the shear‐displacement diagram of the SPSW under compression–shear interaction was obtained, and to further consider the global bending deformation, the shear‐displacement diagram of the SPSW under compression–shear–bending interaction was obtained. Third, the load‐carrying capacities and deformations at the state of elastic buckling of the infill steel plate, the yield of Zones I and III, the yield of Zone II, and the yield of the boundary frame were presented. Finally, cyclic loading test on four scaled one story single bay unstiffened SPSWs under different axial forces at the top of the columns was carried out to verify the proposed analytical model. Shear‐displacement relationship, shear capacity, and envelope curves of the specimens were compared with the predicted values. Results indicate that the proposed analytical model can reasonably predict the decrease of the shear load capacity and stiffness of the SPSWs due to the existence of the axial load at the boundary columns.  相似文献   

4.
为研究开洞形式及槽钢加劲肋对钢板剪力墙抗震性能的影响,对2个1/3缩尺的单跨双层侧边开洞-斜向槽钢加劲钢板剪力墙进行了低周往复荷载试验,得到了双侧开洞 交叉加劲钢板剪力墙和单侧开洞-多道斜向槽钢加劲钢板剪力墙的荷载-位移曲线、破坏特征、骨架曲线等,分析了两种钢板墙的承载能力、延性、退化特性以及耗能能力等性能。通过分析框架梁的受力情况,给出了考虑加劲肋作用的开洞处梁腹板最小厚度计算公式。试验结果表明,两种形式的槽钢加劲钢板剪力墙均有良好的抗震性能。双侧开洞 交叉加劲钢板剪力墙试件的滞回环饱满呈梭形;单侧开洞-多道斜向槽钢加劲钢板剪力墙试件在加载前期滞回曲线有“捏缩”现象,耗能梁段形成后“捏缩”现象消失。槽钢加劲肋能有效限制内填钢板的屈曲变形,加载过程中未发生扭转,避免加劲肋破坏导致加劲效果失效。双侧开洞 交叉加劲钢板剪力墙试件受槽钢加劲肋作用,中梁开洞处梁腹板承受剪力增大约30%。建议在开洞处梁腹板合理布置加劲肋,避免框架梁过早屈服影响整体结构性能的发挥。  相似文献   

5.
钢板剪力墙抗震行为与设计   总被引:3,自引:0,他引:3  
本研究主要目的在于针对未束制型钢板剪力墙的使用性与消能特性加以改良,并研发束制型钢板剪力墙试体,共规划四座试体,3cm厚之低降伏LYS钢板为墙体:一座完全不加束制构件,另两座试体分别在LYS钢板墙体之两面以矩型钢管束制之,第四座则以钢筋混凝土板(简称为CP板)束制LYS钢板墙,于地震工程研究中心进行试验,同时并研究钢板剪力墙的分析模型,包括精准的Strip Model供研究者应用,与较简易的等效斜撑模型供工程实务应用。试验结果显示,束制型钢板剪力墙,LYS钢板挫屈所产生之声响减小,且平面外侧向挫屈变形也随之减少,而消能效果也明显增加。束制与未束制钢板剪力墙之分析模型采用Strip Model,皆可以准确仿真出试验所得之迟滞循环。在单向侧推分析中,采用等效层斜撑模型仿真束制型钢板剪力墙的初始劲度以及强度与试验结果接近。  相似文献   

6.
钢板剪力墙低周反复荷载试验研究   总被引:34,自引:0,他引:34       下载免费PDF全文
本文进行了6个13比例钢板剪力墙的低周反复荷载试验,重点研究了钢板墙极限承载力和滞回性能,为钢板墙结构利用屈曲后强度及抗震设计提供试验依据;本试验揭示了边柱局部屈曲、加劲肋布置形式、加劲板刚度和板高厚比对钢板墙滞回性能的影响。试验结果表明,边柱不出现局部屈曲是钢板墙发挥极限承载力的重要保证;厚板和较强的加劲肋对提高钢板墙滞回曲线的饱满度和滞回环面积是有利的;三种钢板墙以交叉加劲板的承载力和滞回性能最佳,十字加劲板次之,钢板墙结构耗能能力依赖于钢板与边柱的弹塑性变形和钢板面外鼓曲变形。试验曲线与应用弹塑性大挠度有限元法计算的滞回曲线吻合良好;利用屈曲后强度的钢板墙受剪承载力,其试验值与本课题建议公式及有限元值计算结果基本一致。  相似文献   

7.
As a new type of lateral load-resisting system in SPSW systems, corrugated SPSWs (CSPSWs) have been gradually researched and applied. Corrugated plates offer various advantages over flat plates including higher energy dissipation capacity, ductility, out-of-plane stiffness, and improved buckling stability. For seismic control and isolation techniques, low yield point (LYP) steels (LY100, LY160, and LY225) are the reliable and ideal energy-dissipating materials. The low yield point CSPSWs combine high energy-consuming materials with high-performance structures to provide a better solution for ductile and seismic resistance of high-rise and super tall buildings. Currently, there are no design codes addressing the seismic performance of LYP corrugated steel plate shear walls (CSPSWs). This study investigates cyclic behavior and energy dissipation performance of corrugated steel plate yield point (100, 160, 225, 235, and 345 MPa) of different thickness CSPSWs and determine the plate yield point that provides the optimum performance. Results and findings of this study reveal that compared with the ordinary yield strength corrugated steel plates, the low yield point CSPSWs have a larger safety factor of lateral bearing capacity, a fuller hysteresis curve, a strong energy dissipation coefficient, a larger ductility coefficient and a smaller fluctuation range of strength degradation coefficient, and better strength stability. The initial equivalent stiffness of CSPSWs with different yield strengths is the same.  相似文献   

8.
Ultimate shear strength of steel plate shear walls, SPSW, was conventionally computed as the sum of base shear supported by in-fill plate and boundary frame elements. The base shear supported by the in-fill plate was computed assuming that it was fully yielded after buckling whereas the base shear supported by the boundary frame elements was computed by plastic analysis assuming uniform yielding mechanism. In this paper the ultimate shear strength of SPSW was investigated by the finite element method. A detailed three-dimensional finite element model was established using ANSYS software at which the in-fill plate and the boundary frame elements were modeled using finite strain iso-parametric shell elements. The analysis included material and geometric non-linearities. Numerical results obtained from cyclic and pushover loading of SPSWs were verified by comparison to test results published in the literature. A comprehensive parametric analysis was conducted to assess the effect of geometric and material parameters of the wall on its ultimate shear strength. Discrepancies between numerical results and conventional theory were attributed to interaction of in-fill plate and boundary frame elements at ultimate load. When the flexural rigidity of boundary frame elements decreased, the in-fill plate did not achieve full yield strength. On the other hand, the base shear supported by boundary frame elements increased when thicker in-fill plates were utilized. Numerical results were used to update the theoretical expression of ultimate shear strength of SPSWs. The proposed expression was assessed by comparison to test results published in the literature.  相似文献   

9.
Steel plate shear wall (SPSW) has been widely used as a lateral force resisting system (LFRS) for medium or high‐rise buildings. The fundamental period is an important parameter for seismic design and seismic risk assessment of building structures. In this paper, a simplified method is developed for the period prediction of SPSW structures based on the basic theory of engineering mechanics. It estimates a SPSW structure as a shear system of steel frame and a shear‐flexure system of SPSWs separately. The fundamental period of the SPSW structure is calculated according to the integration of the lateral stiffness of the steel frame and SPSWs along the height. A corrected formula is proposed based on the fitting analysis of the ratio of the FEM period to the estimated period. A shaking table test is used to validate the corrected formula, the relative error between the corrected result and the test result is 5.0%. Besides, the proposed method is also compared to some existing methods for the period prediction of SPSW structures, the results indicate that the proposed method has good accuracy and can be hand‐calculated. Finally, a probability‐based method is proposed for the corrected formula, and the fundamental period could be determined with a certain guarantee. A confidence interval estimation could be determined via the proposed method according to the demand of structural design.  相似文献   

10.
为研究不同复合比下不锈钢复合钢材在地震循环往复荷载作用下的力学特性,开展23个3+3mm厚316L+Q235B不锈钢复合钢材试件的单调拉、压和15种不同循环加载制度下的试验。根据试验结果,分析该类复合钢材的单调性能、滞回性能以及宏观和微观破坏形态;基于Ramberg-Osgood三参数模型拟合循环骨架曲线,并讨论其与单调荷载下的力学性能区别;基于Chaboche模型标定该不锈钢复合钢材的本构模型参数,并采用数值模型对其他循环加载制度下的力学响应进行模拟;最后与3+5mm厚316L+Q235B不锈钢复合钢材在循环骨架曲线、循环本构关系及滞回曲线方面进行对比,分析复合比的影响。试验结果与分析表明:该种复合比的不锈钢复合钢材在循环荷载下仍表现出明显的循环强化作用和混合强化(等向强化和随动强化)特征;滞回曲线饱满;随着循环周次的增加,卸载刚度和再加载曲线的初始刚度出现明显退化;Ramberg-Osgood模型可以较好地对其循环骨架曲线进行拟合;文章提出的循环本构模型能够准确模拟该复合比不锈钢复合钢材循环往复荷载作用下的力学响应;该复合钢材与3+5mm厚316L+Q235B不锈钢复合钢材在循环荷载下的具体力学指标存在明显区别。研究成果为提出双金属复合钢材的统一循环本构模型提供重要基础。  相似文献   

11.
高强冷弯型钢骨架墙体抗剪性能试验研究   总被引:3,自引:0,他引:3       下载免费PDF全文
对550MPaC型冷弯型钢立柱、550MPa带肋钢板和石膏板组成的高强冷弯型钢骨架墙体进行了16块足尺试件(宽2.4m,高3m)的抗剪试验研究。对带肋钢板+石膏板双面板、单面带肋钢板、单面石膏板和双面无板带交叉扁钢拉条支撑4类墙体试件进行了无竖向力水平单调加载、无竖向力水平低周反复加载和有竖向力水平低周反复加载的试验,得到了各类墙体试件的受剪承载力指标和位移延性系数μ等性能指标。试验结果表明:各类墙体单调加载试件抗剪强度均比反复加载试件高;单面石膏板墙体试件与0.8倍的单面带肋钢板墙体试件的承载力指标之和与双面板墙体试件承载力指标接近;双面无板带交叉扁钢拉条支撑墙体试件抗剪强度是双面板墙体试件的60%~67%;双面板墙体试件延性系数在1.731~2.384之间。  相似文献   

12.
为研究中等剪跨比钢筋混凝土(RC)剪力墙的拉-弯-剪受力性能,对4个RC剪力墙开展了在恒定轴拉力和往复水平力作用下的拟静力试验。RC墙剪跨比为1.5,尺寸和配筋均相同,仅轴拉力变化。结果表明:RC墙分别发生了剪切破坏、弯曲-剪切破坏和弯曲破坏;轴拉力致使RC墙的水平承载力降低,竖向钢筋平均拉应力比ns从0.20增大到0.80时,RC墙峰值荷载降低了约55%;中等剪跨比RC墙弯曲-剪切耦合效应明显,墙底部截面弯曲屈服后,塑性铰区的剪切变形也表现出显著的非线性;轴拉力和往复水平力作用下墙体发生显著的轴向伸长,引起墙体受剪承载力退化,竖向钢筋平均拉应力比ns=0.40的RC墙,其受力由弯曲机制向剪切机制转变,出现了弯曲-剪切破坏,基于转动角软化桁架模型和轴向伸长的实测数据,定量计算了该类墙体的受剪承载力退化,揭示了弯曲-剪切破坏机理。最后,验证了美国ACI 318—14和中国JGJ 3—2010中RC墙正截面拉弯承载力计算方法和公式的适用性。  相似文献   

13.
为研究中等剪跨比钢筋混凝土(RC)剪力墙的拉-弯-剪受力性能,对4个RC剪力墙开展了在恒定轴拉力和往复水平力作用下的拟静力试验。RC墙剪跨比为1.5,尺寸和配筋均相同,仅轴拉力变化。结果表明:RC墙分别发生了剪切破坏、弯曲-剪切破坏和弯曲破坏;轴拉力致使RC墙的水平承载力降低,竖向钢筋平均拉应力比ns从0.20增大到0.80时,RC墙峰值荷载降低了约55%;中等剪跨比RC墙弯曲-剪切耦合效应明显,墙底部截面弯曲屈服后,塑性铰区的剪切变形也表现出显著的非线性;轴拉力和往复水平力作用下墙体发生显著的轴向伸长,引起墙体受剪承载力退化,竖向钢筋平均拉应力比ns=0.40的RC墙,其受力由弯曲机制向剪切机制转变,出现了弯曲-剪切破坏,基于转动角软化桁架模型和轴向伸长的实测数据,定量计算了该类墙体的受剪承载力退化,揭示了弯曲-剪切破坏机理。最后,验证了美国ACI 318—14和中国JGJ 3—2010中RC墙正截面拉弯承载力计算方法和公式的适用性。  相似文献   

14.
为研究不同冷弯薄壁型钢屈曲约束形式的钢板剪力墙的往复剪切性能,剥离框架对钢板剪力墙结构抗侧力的贡献,单独对3个不同屈曲约束形式的钢板剪力墙结构试件和1个纯钢板剪力墙结构试件进行了拟静力试验研究,并通过试验与理论分析揭示了不同屈曲约束形式的钢板剪力墙在往复剪切作用下的力学性能与失效机理。结果表明:冷弯薄壁型钢对钢板剪力墙的面外变形具有较好的约束作用,显著提高了钢板剪力墙的耗能能力、延性和承载力; 竖向屈曲约束构造形式对钢板剪力墙的耗能能力提高效果最好,其次是水平约束形式,最差是45°斜向约束形式; 对于带45°斜向约束的试件而言,由于约束形式非轴向对称,其承载力在推、拉方向上表现出明显的差异,即在拉力带垂直于冷弯薄壁型钢约束时,其承载力更高。  相似文献   

15.
Experiments on mechanical properties of salt rocks under cyclic loading   总被引:1,自引:0,他引:1  
The primary purpose of underground gas storages is to provide gas for seasonal consumptions or strategic reserve.The periodical operations of gas injection and extraction lead to cyclic loading on the walls and surrounding rocks of gas storages.To investigate the mechanical behaviors of different host rocks in bedded salt deposit,laboratory experiments were conducted on the samples of rock salt,thenardite,glauberite and gypsum.The mechanical properties of rock samples under monotonic and cyclic loadings were studied.Testing results show that,under monotonic loading,the uniaxial compressive stress(UCS) of glauberite is the largest(17.3 MPa),while that of rock salt is the smallest(14.0 MPa).The UCSs of thenardite and gypsum are 16.3 and 14.6 MPa,respectively.The maximum strain at the peak strength of rock salt(halite) is much greater than those of the other three rocks.The elastic moduli of halite,thenardite,glauberite and gypsum are 3.0,4.2,5.1 and 6.8 GPa,respectively.Under cyclic loading,the peak strengths of the rock specimens are deteriorated except for rock salt.The peak strengths of thenardite,glauberite and gypsum decrease by 33.7%,19.1% and 35.5%,respectively;and the strains of the three rocks at the peak strengths are almost the same.However,the strain of rock salt at the peak strength increases by 1.98%,twice more than that under monotonic loading.Under monotonic loading,deformation of the tested rock salt,thenardite and glauberite shows in an elastoplastic style.However,it changes to a ductile style under cyclic loading.Brittle deformation and failure are only observed for gypsum.The results should be helpful for engineering design and operation of gas storage in bedded salt deposit.  相似文献   

16.
Steel plate shear walls (SPSWs) are an efficient lateral force-resisting system, and can be designed with corrugated and/or perforated infill plates, depending on structural considerations, architectural requirements, and service design. This paper presents a study on the structural performance of SPSWs with horizontal trapezoidal corrugations and centrally-placed square perforations under monotonic loading. Finite element models were developed for assessment of the buckling stability, stiffness, strength, and ductility performances of the shear walls. To this end, parametric studies were performed by considering the web-plate corrugation angle, thickness, and size of opening as the varying parameters in the nonlinear pushover analyses. It was found that the design of the boundary frame members can be effective in minimizing the deformations imposed by infill plates, providing system ductility, and developing lateral load resistance through stable development of diagonal tension-field action in the web plate. The effects of introducing web-plate perforations, and increasing the size of the opening, on the structural performance were also investigated. Proper design and detailing of the SPSW, along with optimal selection of the web-plate geometrical and corrugation parameters, can ensure desirable structural behavior and seismic performance for such lateral force-resisting systems.  相似文献   

17.
At present, corrugated plates have numerous applications such as web of plate girders and aerospace applications. Higher out‐of‐plane stiffness and initial elastic strength of the corrugated plates compared with flat plates are reasons for consideration. This study investigates the behavior of trapezoidally corrugated steel plate shear walls (TCSPSWs) under monotonic and cyclic loadings. Finite element analyses that include both material and geometric nonlinearities are employed for the examination. The results from finite element analysis are verified through tested specimen findings. Moreover, the behavior of the steel shear walls with the flat infill panels and the corrugated plate infill panels is compared. The results show that explicit dynamic analysis is the most suitable analysis for the TCSPSWs under quasi‐static loading. Furthermore, although strength of the TCSPSWs obtained from the finite element analysis and the test are fully coincident in elastic region, nonetheless, they are fairly coincident in elastic–plastic and plastic region. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

18.
This paper investigates the stress state of the infill steel plate for the unstiffened steel plate shear walls (SPSWs) under compression–shear combination load. First, the infill steel plate is divided into three zones, the stress state of each zone under compression is derived, and the accuracy of the analytical model is verified by a series of numerical examples. Second, considering the combination effects of the gravity load and shear force from the adjacent boundary columns, the stress state of each zone is proposed and discussed. Then the shear capacity of the infill steel plate for the unstiffened SPSWs with gravity load acting on the top of the boundary columns is proposed. Finally, the shear capacity of 21 numerical SPSW specimens with various axial stresses of the boundary columns and different steel infill plate thicknesses is predicted.  相似文献   

19.
In this study, a damage model‐based fatigue behavior is proposed. To consider the fatigue behavior of steel in the damage model, the experimental research on reinforcing steel bar grades HRB400 was presented. The monotonic tension test and low‐cycle fatigue test were carried out. The plastic strain amplitude–fatigue cycle (εp–2Nf) curve and plastic strain amplitude–strength loss factor (εp?SR) curve were obtained. The fatigue parameters (Cf, Cd, and α) were proposed by nonlinear fitting. The specimens were simulated using the “Reinforcing Steel” material in “OpenSees” program. These fatigue parameters were proved to accurately describe the fatigue behavior of HRB400 rebar. Moreover, to verify the application of fatigue damage model in RC column, fiber‐based element models were established based on the quasi‐static cyclic test on RC columns. The calculated results agreed well with those of the tests. The damage degree of RC column was calculated by the recorded stress–strain curves of material. The proposed fatigue parameters could be referred in damage model based on material fatigue behavior.  相似文献   

20.
In spite of existing comprehensive studies on the behavior of steel plate shear wall (SPSW), some aspects of the SPSW have remained unknown, yet. One of the important aspects that is unknown is the crack effect on the SPSW behavior in linear and nonlinear zones. Some experimental studies have been reported that SPSWs were fractured due to crack propagation. Therefore, the crack effect on the behavior of SPSW should be accounted in considering of SPSW behavior. Although the effect of crack on the thin SPSW has been investigated to a limited extent numerically, stiffened SPSPW, especially diagonally stiffened SPSW, has not been studied. In doing so, in this paper, the effect of crack effect on the behavior of diagonally stiffened SPSWs is studied parametrically and numerically. Numerical results showed that stiffened walls exhibit better behavior in the presence of crack compared with SPSW in both elastic and inelastic zones. Because crack propagates in nonlinear zone, it has not effective on elastic behavior of diagonally stiffened SPSW. The effect of crack was also presented as mathematical equations to estimate load–displacement curve that are in agreement with the finite element results especially for wall thinker stiffeners.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号