首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The performances of variable curvature sliding isolators like variable frequency pendulum isolator (VFPI) and variable curvature friction pendulum system (VCFPS) installed in the base‐isolated benchmark building subjected to bi‐directionally acting seven strong earthquakes have been studied. The shear type base‐isolated benchmark building is modelled as three‐dimensional linear elastic structure having three degrees‐of‐freedom at each floor level. Time domain dynamic analysis of the building has been carried out with the help of constant average acceleration Newmark‐Beta method and non‐linear isolation forces has been taken care by fourth‐order Runge‐Kutta method. The force‐displacement responses of the VFPI and VCFPS are studied under parametric variations of their key characteristics for the comparative performance evaluation. The time history variations of response characteristics and peak response evaluation criteria are also investigated for overall comparison of their performances. The performance of VFPI and VCFPS are observed both in uniform and hybrid isolation systems. The force‐displacement responses of both VFPI and VCFPS subjected to strong near‐field earthquakes show excessively large isolator displacements at higher initial radii of curvature of sliding surface. The large isolator displacements of VFPI and VCFPS can be restrained efficiently by addition of viscous fluid dampers in comparison to the increase in coefficient of friction of isolators. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

2.
The friction pendulum system (FPS), a type of base isolation technology, has been recognized as a very efficient tool for controlling the seismic response of a structure during an earthquake. However, previous studies have focused mainly on the seismic behavior of base-isolated structures far from active earthquake faults. In recent years, there have been significant studies on the efficiency of the base isolator when subjected to near-fault ground motions. It is suggested from these studies that the long-duration pulse of near-fault ground motions results in significant response of a base-isolated structure. In view of this, an advanced base isolator called the variable curvature friction pendulum system (VCFPS) is proposed in this study. The radius of the curvature of VCFPS is lengthened with an increase of the isolator displacement. Therefore, the fundamental period of the base-isolated structure can be shifted further away from the predominant period of near-fault ground motions. Finite element formulations for VCFPS have also been proposed in this study. The numerical results show that the base shear force and story drift of the superstructure during near-fault ground motion can be controlled within a desirable range with the installation of VCFPS. Therefore, the VCFPS can be adopted for upgrading the seismic resistance of the structures adjacent to an active fault.  相似文献   

3.
Earthquake response of slender and broad liquid storage steel tanks isolated with variable curvature friction pendulum systems (VCFPSs) is investigated under near-fault motions. The tanks isolated with VCFPS are idealised with three-degrees-of-freedom associated with convective, impulsive and rigid masses. The frictional forces mobilised at the interface of the VCFPS are assumed to be velocity independent. The governing equations of motion of isolated tank are derived and solved in the incremental form using Newmark's method. For comparative study, the seismic response of liquid storage tanks with the VCFPSs is compared with that of same liquid storage tanks isolated using the friction pendulum systems (FPSs). The seismic response of isolated liquid storage tanks is also compared with that of the non-isolated tanks. Further, a parametric study is carried out to critically examine the behaviour of liquid storage tanks isolated with the VCFPSs. The important parameters considered are the friction coefficient of VCFPS, the fundamental period at the centre of the sliding surface of VCFPS and the tank aspect ratio. It is observed that under near-fault ground motions, the VCFPS is quite effective in controlling the seismic response, viz. the base shear, the sloshing displacement and the impulsive displacement, of liquid storage tanks.  相似文献   

4.
Application of orthogonal pairs of rollers on concave beds (OPRCB) isolating system to short‐ and mid‐rise buildings is presented in this paper. At first, the analytical formulation of the set of equations, governing the motion of Multi Degree of Freedom (MDOF) systems, isolated by OPRCB isolators, has been developed. Then, some multi‐story regular buildings of shear type have been considered, once on fixed bases and once installed on the OPRCB isolators. Next, some horizontal and vertical accelerograms of both far‐ and near‐fault earthquakes with low‐ to high‐frequency content, particularly those with remarkable peak ground displacement values, have been selected and normalized to three peak ground acceleration levels of 0.15 g, 0.35 g and 0.7 g, and their stronger horizontal component simultaneous with their vertical component have been used for response analysis of the considered buildings. Story drifts and absolute acceleration response histories of isolated buildings have been calculated by using a program, developed in MATLAB environment by using the fourth‐order Runge–Kutta method, considering the geometrically nonlinear behavior of isolators. Maximum relative displacement and story drifts as well as absolute acceleration responses of considered isolated buildings for various earthquakes have been compared with those of corresponding fixed‐base buildings to show the high efficiency of using OPRCB isolators in multi‐story and tall regular buildings. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

5.
Abstract:   In this study, a friction pendulum system (FPS) and a magnetorheological (MR) damper are employed as the isolator and supplemental damping device, respectively, of a smart base-isolation system. Neuro-fuzzy models are used to represent dynamic behavior of the MR damper and FPS. A fuzzy logic controller (FLC) is used to modulate the MR damper so as to minimize structural acceleration while maintaining acceptable base displacement levels. To this end, a multi-objective optimization scheme that uses a nondominated multi-objective genetic algorithm (NSGA-II) is used to optimize parameters of membership functions and find appropriate fuzzy rules. To demonstrate the effectiveness of the proposed multi-objective genetic algorithm for FLC, a numerical study of a smart base-isolation system is conducted using several historical earthquakes. It is shown that the proposed method can find optimal fuzzy rules and that the NSGA-II-optimized FLC outperforms not only a passive control strategy but also a human-designed FLC and a conventional semiactive control algorithm.  相似文献   

6.
对一幢四层摩擦摆隔震框架结构进行ABAQUS有限元模拟,将隔震前后结构的动力反应进行了对比,分析结果表明:摩擦摆隔震支座可有效降低上部结构的地震响应,具有使上部结构整体平动的良好隔震性能。  相似文献   

7.
庄鹏  薛素铎  宋飞达 《工业建筑》2012,42(3):33-38,48
摩擦摆(FPS)是一种具有球形滑动面的隔震装置,可用于保护大型工程结构免遭地震灾害的破坏。近年来,大空间建筑发展迅猛,为了提高其抗震性能,将FPS安装于网格屋盖与下部支承结构之间形成滑移隔震机制以降低结构的地震响应。针对某网架屋盖及其下部支承结构,开展了FPS滑移隔震研究。采用大型通用有限元软件ABAQUS,建立了整体结构的三维模型,模型中包括接触面单元和梁单元,能够反映结构的非线性行为。通过非线性时程分析,研究了考虑不同参数时FPS对于上述结构地震防护的可行性和有效性。  相似文献   

8.
复摩擦摆支座应用于楼面隔震研究   总被引:1,自引:0,他引:1  
对复摩擦摆支座在楼面隔震中的应用进行了研究.在长期使用过程中,隔震楼板的上部质量可能发生较大变化,考虑到摩擦摆支座自身隔震周期与上部质量无关的特性以及复摩擦摆支座相较于单曲面摩擦摆支座更好的隔震效益,因此推荐复摩擦摆支座用作楼面隔震支座.为控制隔震楼板相对结构楼面的位移,可通过提高复摩擦摆支座的摩擦系数或附加粘滞阻尼器而实现.以一工程实例为背景,对比研究粘滞阻尼器+低摩擦系数复摆支座方案与高摩擦系数复摆支座的隔震效果,发现前一方案 可以保证不同加速度水平作用下隔震楼面的隔震效果,是一种较好的隔震配置组合.  相似文献   

9.
This paper investigates the seismic behaviour of closely spaced fixed-base and isolated building structures in near-fault (NF) zones. Seismic pounding of fixed-base structures is considered at different heights, being from one or both opposite sides and at different seismic gap width. The response evaluation results of fixed-base buildings drive towards providing limited, but adequate, seismic gaps to perform seismic isolation. This aims at reducing structural responses with no seismic pounding under limited gaps, minimising the possible damage repair and diminishing the needed maintenance works due to strong NF earthquakes. To achieve that untraditionally, the paper presents a recently proposed seismic isolation system, named roll-in-cage (RNC) isolator, as a non-traditional solution to avoid direct seismic pounding of isolated buildings with their surrounding adjacent structures. It was found that the RNC isolator’s buffer mechanism is able to draw down any possible pounding of the isolated superstructure to be within the isolator solid limits. This entirely prevents direct structure-to-structure pounding but on the account of amplifying its acceleration and drift responses. However, such amplified responses might lead to only minor or moderate structural damage under sever NF earthquakes with 1.20g peak ground acceleration. Nevertheless, such damage could be avoided entirely using stiffer RNC isolators to achieve reduction of seismic response up to 69.0% under the same severe loading conditions and limited seismic gaps with no seismic pounding. Consequently, the RNC isolator could be an efficient solution for aseismic design in NF zones considering limited seismic gaps.  相似文献   

10.
The friction pendulum bearing (FPB) has been widely studied as an effective dry friction sliding isolation device, due to its self-limit and self-reset capability. The refinement finite element models of FPB were applied to column supporting single-layer reticulated domes. The seismic performances of these structures with FPBs were systematically analyzed by finite element software LS-DYNA. Numerical results illustrate that the optimal friction coefficient of FPB increases with increasing earthquake intensity and the optimal range of friction coefficient locates between 0.025 and 0.15. The seismic effects of single-layer reticulated domes with FPBs are strengthened with the increase of curvature radius, while isolation effect of FPBs has no obvious change as the curvature radius exceeds 1.5 m. Additionally, the parameter selection principles of friction pendulum bearings for column supporting single-layer reticulated domes are given by means of investigating the force of the slider of FPBs and dynamic analysis of single-layer reticulated domes with FPBs.  相似文献   

11.
模块化建筑具有整体装配率高,施工绿色环保、高效等优点,然而其抗震性能相对较差,震后修复成本高。将隔震技术应用到模块化建筑中,可在不改动上部结构的前提下,改善其整体抗震能力。相比传统橡胶隔震技术,摩擦摆隔震技术具有承载力大、工业化程度高、湿作业少等优势。为此,研发了一种自适应变摩擦摆隔震支座,分析了该支座力学特性,确定其有限元模拟方法。对变摩擦摆隔震支座进行不同工况下剪切性能试验,试验和有限元模拟结果相对误差均在10%以内,验证了有限元模拟方法的正确性。基于GB/T 51408—2021《建筑隔震设计标准》提出模块化钢框架变摩擦摆隔震结构一体化直接设计方法,以实际工程为背景,设计模块化钢框架摩擦摆和变摩擦摆隔震结构,并对非隔震结构和隔震结构的抗震性能进行对比分析。研究表明:相比摩擦摆隔震支座,所提出变摩擦方式可实现支座等效刚度增加11%左右,等效阻尼比增加18%左右;相比摩擦摆支座隔震结构,变摩擦摆支座隔震结构的楼板加速度、层间位移角、层间剪力和上部结构损伤程度略有增加,但隔震层位移明显减小,且这种特性随地震动强度的增加而愈明显,体现了变摩擦摆支座的自适应性。  相似文献   

12.
变曲率摩擦摆隔震支座理论分析与数值模拟   总被引:2,自引:0,他引:2  
介绍了变曲率摩擦摆隔震支座的基本构成,从力学平衡原理出发对变频式摩擦摆隔震支座和锥形摩擦摆隔震支座两类变曲率摩擦摆隔震支座进行理论分析,推导出变曲率摩擦摆隔震支座的刚度,探讨了支座的自回复特性,得出支座最大残余位移的计算公式.采用ABAQUS软件对2类变曲率摩擦摆隔震支座进行实体单元建模,模拟了低周反复荷载作用下的滞回...  相似文献   

13.
基于摩擦摆(FPS)及其隔震剪切型结构的振动微分方程,进一步研究了该系统的振动形态。通过改变摩擦摆的摩擦系数和滑道半径,分析二者对结构隔震效果的影响。结果说明:摩擦系数对结构层间位移、基底剪力以及基底滑移量均有较大的影响;滑道半径对基底滑移量有较大影响,但对层间位移和基底剪力影响不大。  相似文献   

14.
摩擦摆支座恢复力模型研究   总被引:2,自引:1,他引:1  
采用微分连续模型模拟摩擦摆支座的单向和双向耦合恢复力,表明其可以较好地描述恢复力的非线性特征和双向耦合效应。由计算分析可以看出,考虑双向耦合作用与未考虑双向耦合作用的滞回曲线有较大差别,因而,支座应采用双向耦合恢复力模型以考虑双向耦合作用对结构地震反应和支座性能的影响。  相似文献   

15.
This paper investigates effectiveness of selective control strategy in hybrid base isolation systems including isolators and semi‐active variable friction (VF) dampers. According the selective control strategy, VF dampers are activated just if the displacement at the isolators exceeds the threshold value. The slip‐force control is based on the values of floors' accelerations and velocities. By controlling the slip‐force magnitude in the VF dampers, effective energy dissipation can be achieved in a seismic event. Activation of dampers according to the selective control strategy allows high‐energy dissipation by minimum energy required for adjusting the slip‐force. Performance of a multi‐storey frame with a base isolation system and VF dampers under various earthquake records was obtained numerically using originally developed MATLAB routines. Seismic response of the analysed structure with the selective controlled system was compared with that when the VF dampers were active during the whole earthquake. It is shown that adjustment of the slip‐force in a selective manner allows additional reductions in peak displacements and accelerations of the structure. The results also demonstrate that this control strategy yields reduction of the base displacement without increasing the peak base shear forces. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

16.
Pendulum tuned mass damper (PTMD) is usually used to control the horizontal vibration of a tall building. However, traditional PTMD is highly sensitive to frequency deviation and difficult to adjust its frequency. In order to improve this problem of traditional PTMD and protect a tall building more effectively, a novel PTMD, called self‐adjustable variable pendulum tuned mass damper (SAVP‐TMD), is proposed in this paper. On the basis of the acceleration ratio between TMD and primary structure, the SAVP‐TMD can retune itself by varying the length of the pendulum according to the improved acceleration ratio‐based adjustment algorithm. PTMD and primary structural accelerations are obtained from two accelerometers respectively, and the acceleration ratio is calculated in a microcontroller, then, the stepper motor will adjust the pendulum under the guidance of the microcontroller under a specific harmonic excitation. The improved acceleration ratio‐based adjustment algorithm is proposed and compared to solve the nonconvergent retuning problem. The SAVP‐TMD can be regarded as a passive damper including a frequency adjustment device. A single‐degree‐of‐freedom structure model is used to verify the effectiveness of SAVP‐TMD through both experimental study and numerical simulation. In order to further verify the effect of SAVP‐TMD in the MDOF structure, a five‐storey structure coupled with an SAVP‐TMD is proposed as a case study. The results of experiment, simulation, and case study all show that SAVP‐TMD can retune itself to the primary structural dominant frequency robustly, and the retuned PTMD has a better vibration control effect than the mistuned one.  相似文献   

17.
Seismic response of a base‐isolated building equipped with single tuned mass damper (STMD), multiple tuned mass dampers (MTMDs), and distributed multiple tuned mass dampers (d‐MTMDs) under real earthquake ground motions is investigated. Numerical study is carried out using analytical models of five‐, 10‐, and 15‐storey base‐isolated buildings equipped with the STMD, MTMDs, and d‐MTMDs. The buildings are modeled as shear‐type structure with a lateral degree of freedom at each floor level, and the buildings are isolated using the laminated rubber bearing, lead‐core rubber bearing, friction pendulum system, and resilient‐friction base isolator. The coupled differential equation of motion for the buildings are derived and solved in the incremental form using Newmark's step‐by‐step method of integration. From the numerical study conducted, it is concluded that installing a tuned mass damper at each floor level of a base‐isolated building reduces the structural response in terms of top floor acceleration and bearing displacement. It is found that installing the MTMDs and d‐MTMDs are significantly beneficial in reducing top floor acceleration as compared with the STMD. Further, almost comparable reduction in the bearing displacement could be obtained by installing the STMD, MTMDs at top, and d‐MTMDs in the base‐isolated buildings. The d‐MTMDs are more beneficial as compared with the STMD and MTMDs as otherwise huge controller mass can now be divided and distributed on different floor levels.  相似文献   

18.
随着隔震技术的发展,摩擦摆隔震支座因其隔震周期与上部结构质量无关且具备自复位能力等独特优势受到日益广泛的关注.保证摩擦面稳定的低动摩擦系数是推动其工程应用的关键.目前,美国摩擦摆产品多使用航空航天领域的固体润滑技术,而此类技术应用于摩擦摆的相关研究在我国尚处于起步阶段,亟需进行系统梳理和思考.文章简述滑动摩擦界面固体润...  相似文献   

19.
A somehow new isolating system is introduced for short‐ to mid‐rise buildings. It does not need high technology for manufacturing and is not costly, contrary to other existing systems like lead‐rubber bearing or friction pendulum bearing systems. Each isolator of the proposed system consists of two Orthogonal Pairs of Rollers on Concave Beds (OPRCB). Rolling rods installed in two orthogonal directions make possible the movement of the superstructure in all horizontal directions. The concave beds, in addition to giving the system both restoring and re‐centring capabilities, make the force–displacement behaviour of the isolators to be of hardening type. The results of the studies on the specifications of the proposed isolating system and its application to buildings can be presented in two parts. Part I relates to the analytical formulations and the results of experimental and numerical studies of the system's mechanical feature, including its dynamical properties, and part II focuses on the effectiveness of the proposed isolation system in seismic response reduction of low‐ to mid‐rise buildings. In part I of the work, presented in this paper, at first general features of the OPRCB isolator are explained and the analytical formulation, governing its dynamic motion, is derived and discussed in detail. Then, the results of experimental and numerical investigations, including the lateral load displacement relationship of the OPRCB isolators under various vertical loads, obtained by both Finite Element Analyses (FEA) and laboratory tests are presented (FEA results have been verified by the laboratory tests). Finally, responses of some Single Degree of Freedom (SDOF) systems, isolated by OPRCB devices, subjected to simultaneous effect of horizontal and vertical ground motions, are presented and compared with responses of their fixed‐base counterparts. Based on the numerical calculations, it is observed that the oscillation period of the isolated SDOF system is independent of its mass, the initial amplitude of its free vibration response and the value of rolling resistance coefficient. With regard to seismic response reduction it is seen that the amount of absolute accelerations in the SDOF systems, isolated by OPRCB devices, can be reduced drastically in comparison with the fixed‐base systems. Results also show that if the rollers and cylindrical beds are made of high‐strength steel materials, the system can be used effectively under the vertical loads of about the axial forces of ground floor columns in ordinary buildings up to 14 storeys. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

20.
In this study, performances of 2 types of bridges, with and without seismic isolation, are addressed in 2 damage analysis scenarios, where, in the first, the side column and, in the second, the middle column are removed from the bridge piers. The performance was assessed using nonlinear dynamic analysis, and the time history and maximum structural responses were evaluated. Initially, sliding‐rubber isolators were designed according to AASHTO guide specifications, and then the bridges were modeled in OpenSees software package. Additionally, the coefficient of friction for the isolator was considered as a variable due to sudden removal of the columns and the consequent changes in the sliding velocity and axial forces. The results indicate that use of seismic isolation systems caused an increase in all maximum structural responses except that of the base shear. Considering the frictional performance of the isolators, slides in the deck are not caused by yielding of seismic isolators, and the reason for permanent displacements of the deck may be attributed to bridge instabilities in the first scenario. However, decrease in the horizontal stiffness results in increased maximum permanent displacement. In the first scenario, uplift of the deck occurred in the case of isolated bridge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号