首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 15 毫秒
1.
Special characteristics of earthquakes in the near‐fault regions caused failures for many modern‐engineered structures. Fling‐step and forward‐directivity are the main consequences of these earthquakes. High‐amplitude pulses at the beginning of the seismograph have been obviously presented in forward‐directivity sites. These pulses have high amount of seismic energy released in a very short time and caused higher demands for engineering structures. Fling‐step is generally characterized by a unidirectional large‐amplitude velocity pulse and a monotonic step in the displacement time history. These monotonic steps cause residual ground displacements that are associated with rupture mechanism. In this paper, the seismic performance of steel buckling‐restrained braced frames with mega configuration under near‐source excitation was investigated. Fourteen near‐fault records with forward‐directivity and fling‐step characteristics and seven far‐faults have been selected. Nonlinear time‐history analyses of 4‐story, 8‐story, 12‐story and 15‐story frames have been performed using OpenSees software. After comparing the results, it is shown that, for all frames subjected to the selected records, the maximum demand occurred in lower floors, and higher modes were not triggered. Near‐fault records imposed higher demands on the structures. The results for near‐fault records with fling‐step were very dispersed, and in some cases, these records were more damaging than others. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, concentric braced frames are combined with moment‐resisting frame (MRF) as a dual system subjected to near‐field (NF) pulse‐like and far‐field ground motions. The braced frame in this system configuration consists of steel buckling‐restrained braces (BRB model), braces with shape memory alloy (SMA model), or combination of BRB and SMA braces (COMBINED model). Some prototype structures of the proposed systems are designed according to the code recommendations. Then, the nonlinear models of the considered structures are developed in SeismoStruct software, and nonlinear time history analysis (NLTHA) is implemented. NLTHA is performed subjected to earthquake record sets at maximum considered earthquake (MCE) and design base earthquake (DBE) levels, and responses of the systems are investigated and compared with each other. Among the examined models, the SMA and COMBINED models exceed the CP level subjected to NF‐MCE record set. Therefore, more investigation is needed for using short‐segment SMA braces in the dual‐steel frames in NF area.  相似文献   

3.
In this paper, the seismic performance of steel frames equipped with superelastic SMA braces was investigated. To do so, buildings with various stories and different bracing configurations including diagonal, split X, chevron (V and inverted V) bracings were considered. Nonlinear time history analyses of steel braced frames equipped with SMA subjected to three ground motion records have been performed using OpenSees software. To evaluate the possibility of adopting this innovative bracing system and its efficiency, the dynamic responses of frames with SMA braces were compared to the ones with buckling restrained braces. After comparing the results, one can conclude that using an SMA element is an effective way to improve the dynamic response of structures subjected to earthquake excitations. Implementing the SMA braces can lead to a reduction in residual roof displacement and peak inter-story drift compare to the buckling restrained braced frames.  相似文献   

4.
This paper determines the seismic performance of four‐storey concentrically braced frames equipped with either steel buckling‐restrained braces or buckling‐restrained superelastic shape memory alloy (SMA) braces through incremental dynamic analysis. The incremental dynamic analysis technique is used to examine the behaviour of four‐storey braced frames with four different bracing configurations (including diagonal, split‐X, chevron‐V and inverted‐V) under 20 different ground motion records. The study reveals a satisfactory performance at the design intensity level for both types of braced frames. The results show that the SMA braces lead to a uniform distribution of inelastic response over the height of the buildings, as well as mitigating seismic response in terms of maximum inter‐storey drift and residual roof displacement. By comparing the responses of SMA and buckling‐restrained braced frames under higher intensities of earthquake loading, it is found that the SMA braces can be more beneficial especially under severe ground motion excitations. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

5.
Chevron braced steel frames with vertical shear link have reliable displacement dependent dampers with sufficient strength and ductility to dissipate energy of strong earthquakes through inelastic mechanisms. In this study, shape memory alloy with its superelastic behavior is utilized as material of vertical shear link to improve the ductility characteristics of the system and decrease residual displacements in the structures due to its self‐centering capability. Nonlinear time‐history, incremental dynamic analysis, and dynamic pushover analysis techniques are used to investigate the behavior of two different four‐ and eight‐story frames with steel vertical shear link (STVL) and shape memory alloy vertical shear link (SMVL) under various earthquake records. The results show that there is a negligible residual displacement in the structures with SMVL, although considerable residual displacements can be observed in the structures with STVL. For instance, when the eight‐story frame is subjected to the Northridge earthquake, a 12‐cm residual displacement is observed in the structures with STVL, whereas the structures with SMVL might experience just 3‐cm residual displacement.  相似文献   

6.
High statistics of damages in modern structures (buildings structured based on new codes) exposed to near‐fault earthquake illustrates the necessity of more studies on this kind of earthquake effects on the structures. A specification of near‐fault earthquakes is the directivity effects. Existing records of near‐fault quakes containing directivity effects including records of Iran and abroad were modified and used for linear time history analysis of three steel moment frames (5, 8 and 12 story frames), and the results were compared with nonlinear time history analysis and pushover analysis of far‐fault quakes in this paper. The results showed that these records (near fault) motivate high modes of the structure, and especially for the 12‐story structure, high response was detected, but none of these results made the frames collapse. By comparing nonlinear dynamic analysis (time history) with nonlinear static analysis (pushover), it was concluded that various lateral load patterns in pushover cannot cover the time history result needs. Load distribution pattern based on the first vibration mode covers these demands in the lower floors, but in higher floors, this method is not applicable. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Buckling‐restrained braced frame (BRB) is one of the newest seismic force‐resisting systems used in buildings. However, one of the requirements for designing a structure is to provide a ductility behavior of structures to dissipate earthquake energy and to avoid residual drifts. These days, self‐centering seismic lateral force‐resisting systems have drawn attention due to their potentials to solve the above mentioned issues. On the other hand, shape memory alloys (SMAs) are characterized by unique superelastic behavior, which enables the material to recover its original shape after experiencing large deformations. The goal of this study is to assess BRBs whose ductility are improved by utilizing SMA. Nonlinear time history and incremental dynamic analysis techniques are applied to investigate the behavior of the two frames with different stories (four and eight stories) under different ground motion records. The results showed that utilizing BRB made of hybrid steel and SMA resulted in increasing ductility of the structure and decreasing residual displacements of the structures.  相似文献   

8.
Near‐fault (NF) ground motion having forward directivity and far‐fault (FF) earthquakes can generate different responses on tall reinforced concrete cantilever walls. In this paper, the behavior of the core wall buildings were examined by performing nonlinear time history analyses on 20‐story, 30‐story and 40‐story fiber element models. The concept of one, two, three and extended plastic hinge in the core walls subjected to the NF motions having forward directivity (pulse‐like) and FF motion was studied by carrying out inelastic dynamic analysis. At the upper levels of the walls, NF pulse‐like ground motions can produce considerably larger curvature ductility, inter‐story drift and displacement demands as compared with the FF motions. A new approach was proposed to obtain the moment demand and reinforcement required to balance the curvature ductility demand along the height of a core wall. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A collapse fragility function shows how the probability of collapse of a structure increases with increasing ground motion intensity measure (IM). To have a more reliable fragility function, an IM should be applied that is efficient and sufficient with respect to ground motion parameters such as magnitude (M) and source‐to‐site distance (R). Typically, pulse‐like near‐fault ground motions are known by the presence of a velocity pulse, and the period of this pulse (Tp) affects the structural response. The present study investigates the application of different scalar and vector‐valued IMs to obtain reliable seismic collapse fragility functions for reinforced concrete special moment resisting frames (RC SMRFs) under near‐fault ground motions. The efficiency and sufficiency of the IMs as the desirable features of an optimal IM are investigated, and it is shown that seismic collapse assessments by using most of the IMs are biased with respect to Tp. The results show that (Sa(T1), Sa(T1)/DSI) has high efficiency and sufficiency with respect to M, R, Tp, and scale factor for collapse capacity prediction of RC SMRFs. Moreover, the multiobjective particle swarm optimization algorithm is applied to improve the efficiency and sufficiency of some advanced scalar IMs, and an optimal scalar IM is proposed.  相似文献   

10.
In this study, different energy components in the tall reinforced concrete core‐wall buildings with numerous plastic hinges over the height are investigated using nonlinear time history analysis. The effect of near‐fault and far‐fault earthquakes is compared. The idea of one‐plastic, two‐plastic, three‐plastic and whole‐plastic hinge approaches along the core wall is examined. The input energy, inelastic, damping, kinetic and elastic strain energy during the earthquakes are studied. The results show that a large energy quantity transfers to the structure at the arrival time of the near‐fault motion pulse. Inelastic energy distribution over the height shows a considerable amount of inelastic energy dissipation occurring at the base and above the mid‐height of the walls. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
In near‐fault regions, forward directivity causes long‐period pulse‐like motions with high amplitude and short duration perpendicular to the fault surface. Pulse‐like motions have important roles in forming the distribution of damages over the structure height. Recent studies indicate that the number of spans influences the demand distribution over the moment frame's height. Considering the destruction of the buildings near causative fault in Bam earthquake, Iran (2003) demonstrates that most damages are concentrated in the ground floor of moment frames. Hence, in this study, forward directivity effect on vulnerability distribution of steel moment‐resisting frames with a few number of spans has been studied by nonlinear dynamic analysis of five structural models with different heights under 20 earthquake records. Related to frames height, results showed that 70% to 90% of forward directivity effects are accumulated in lower one‐third or half of model's height. Also, in near field of fault, growing rate of ductility demand at lower parts of model's height is two times higher than that of far‐fault regions. In addition, it was observed that ductility capacity in lower half of low‐rise or one‐third of high‐rise models has a key role in stability of moment frames under near‐fault pulse‐like motions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Recent studies have revealed that a sliding isolator with variable curvature (SIVC) can mitigate the resonance phenomenon likely to occur in seismic response of a conventional friction pendulum system (FPS) isolator due to its constant isolation frequency. The present study simulates four SIVC isolators and an FPS to find the optimum range of initial isolation period and coefficient of friction and employ them in comparing the effectiveness of SIVC in different peak ground acceleration (PGA) scales of near‐fault earthquakes. Velocity‐dependent coefficient of friction and modified viscoplasticity model have been used to simulate nonlinear friction force of the isolators. Results indicate identical performance of all SIVC isolators in PGA scales up to 0.4 g. When subjected to PGA scales from 0.4 g to 1.0 g, polynomial friction pendulum isolator (PFPI) and variable curvature friction pendulum system (VCFPS) reduce base displacement greatly, while conical friction pendulum isolator (CFPI) and variable frequency pendulum isolator (VFPI) show amplified responses. However, in mitigating structural acceleration, performance of CFPI and VFPI, unlike PFPI and VCFPS, which perform poorly, is excellent. Thus, in a strong near‐fault earthquake, PFPI and VCFPS or CFPI and VFPI can be chosen based on whether reduction of base displacement or super‐structural acceleration is the main concern of designer, respectively. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

13.
Posttensioned tendons can be used for rehabilitation of frames as well as for providing self‐centering ability. The optimum selection of retrofit parameters is carried out based on their effect on the seismic behavior of a structure. The results of 2D numerical modeling of the frames in this paper revealed that the rehabilitation of a frame with weak end plate bolted connection by adding posttensioned tendons improves the seismic response of the weak frame to be close to that of the reference frame, whose connections are designed according to AISC code. It was observed that the roof displacements were reduced by 5%, and the maximum story drifts in near‐ and far‐field earthquakes were reduced by 8% and 2% in the rehabilitated frames on average compared to those of the reference frame. The results of 3D substructure numerical models, verified by experimental results, indicated that the changes in the tendon diameter from 12 to 18 mm increased the moment capacity and initial rotational stiffness by 38% and 60%, respectively, compared to those of the reference model. The increase in tendon distance from 18 to 22 cm resulted in 29% rise in moment capacity compared to that of the reference frame.  相似文献   

14.
In the Y‐type eccentrically braced frame structures, the links as fuses are generally located outside the beams; the links can be easily repairable or replaceable after earthquake without obvious damage in the slab and beam. The non‐dissipative member (beams, braces, and columns) in the Y‐type eccentrically braced frames are overestimated designed to ensure adequate plastic deformation of links with dissipating sufficient energy. However, the traditionally code design not only wastes steel but also limits the application of eccentrically braced frames. In this paper, Y‐type eccentrically braced steel frames with high‐strength steel is proposed; links and braces are fabricated with Q345 steel (the nominal yield stress is 345 MPa); the beams and columns are fabricated with high‐strength steel. The usage of high‐strength steel effectively decreases the cross sections of structural members as well as reduces the construction cost. The performance‐based seismic design of eccentrically braced frames was proposed to achieve the ideal failure mode and the same objective. Based on this method, four groups Y‐type eccentrically braced frames of 5‐story, 10‐story, 15‐story, and 20‐story models with ideal failure modes were designed, and each group includes Y‐type eccentrically braced frames with ordinary steel and Y‐type eccentrically braced frames with high‐strength steel. Nonlinear pushover and nonlinear dynamic analyses were performed on all prototypes, and the near‐fault and far‐fault ground motions are considered. The bearing capacity, lateral stiffness, story drift, link rotations, and failure modes were compared. The results indicated that Y‐type eccentrically braced frames with high‐strength steel have a similar bearing capacity to ordinary steel; however, the lateral stiffness of Y‐type eccentrically braced frames with high‐strength steel is smaller. Similar failure modes and story drift distribution of the prototype structures designed using the performance‐based seismic design method are performed under rare earthquake conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号