首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A diagrid structure fused with shear link (DSSL) is an innovative earthquake resilient structural system. The DSSL combines the steel diagrid structural system with shear links to dissipate the earthquake energy with the goal to minimize structural repair and downtime after strong earthquake shaking. The SLs are placed between diamond‐shaped grid units and decoupled from the gravity system. To facilitate the design of the proposed DSSL system, the performance‐based plastic design (PBPD) procedure is extended to design a prototype building utilizing DSSL. Detailed finite element model is developed to simulate the non‐linear dynamic response of the structure under a range of earthquake shaking intensities. The results of non‐linear dynamic analyses show that the DSSL has excellent seismic performance and can be efficiently designed using PBPD. Lastly, detailed collapse risk assessment of the prototype building is performed using the FEMA‐P695 methodology. The result shows that the PBPD‐designed DSSL has adequate margin against collapse. Hence, it can be used as an effective seismic force resisting system.  相似文献   

2.
在总结底部框剪砖房和配筋砌块砌体的抗震性能研究成果的基础上,对底部框剪上部配筋砌块砌体结构的抗震特性进行了初步研究。采用层间剪切模型和三折线骨架曲线恢复力模型,分别按6、7、8度区的多遇烈度、基本烈度和罕遇烈度,输入ElCentro地震波,模拟此类房屋的线性和非线性地震反应。通过分析加速度和位移地震反应,恢复力和层间位移角的变化,考察了该结构的抗震性能和抗震能力。结果表明:底部两层框剪上部六层配筋砌块砌体结构(高25.5m)可用于8度地震区,这种结构的底部框剪层是薄弱部位;应提高框剪层的水平地震剪力设计值,增强延性设计,提高抗倒塌能力。  相似文献   

3.
提高建筑结构抗地震倒塌能力的设计思想与方法   总被引:33,自引:5,他引:33       下载免费PDF全文
工程结构的抗震能力是社会抗震防灾系统的第一道防线。建筑物的倒塌是造成地震灾害的主要原因。建筑物在地震中的破坏程度,大体决定了震害的严重程度。因此,建筑结构的抗震能力,特别是抗地震倒塌能力,是地震区抗震防灾能力的最重要组成部分。文中运用系统科学的思想,介绍了提高建筑结构整体抗震能力的设计思想,结合汶川地震中建筑震害的教训,重点针对建筑结构抗地震倒塌能力,讨论了建筑结构抗震设计中应注意的问题和改进建议。研究结果表明:建筑结构系统的安全储备分为基本安全储备、整体安全储备与意外安全储备三个层次。结构的整体抗震能力和抗地震倒塌能力取决于整体安全储备和意外安全储备,意外安全储备不足是汶川地震建筑结构震害严重的主要原因。结构系统的意外安全储备主要来自其鲁棒性、整体稳定性和整体牢固性。目前对于结构系统的整体安全储备和意外安全储备的研究很不够,结构设计规范的相关规定和要求也有待进一步完善。  相似文献   

4.
The effect of shear wall configurations on seismic responses of high‐rise RC buildings is investigated in this paper using fragility analysis method. Four lower high‐rise RC buildings that have the same plan dimensions and height but are different in configurations in lateral force resisting systems, were firstly designed following the standard code procedure. To consider uncertainties in earthquake motions, 16 real ground motion pairs were selected and scaled, then applied orthogonally to the four RC building models during the Incremental Dynamic Analysis (IDA). Fragility relationships were therefore derived based on the IDA results for the three limit states including slight damage, moderate damage and collapse to show the probabilistic comparison of seismic responses among the four buildings in both x and y‐directions. It was observed that generally adding shear walls will improve buildings' seismic performance at all limit states. However, shear wall configuration also plays a significant role in seismic behavior of the lower high‐rise regular RC buildings' and internal shear walls are generally more effective than external shear walls in improving building's seismic resistance. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
Recent trends towards constructing taller and increasingly slender buildings imply that these structures are more sensitive to wind excitation. This paper presents a technique for the wind‐resistant optimal design of supertall buildings with a complex structural system including concrete‐filled steel tube columns, shear walls, and various types of beams and columns. In each optimal design cycle, the dynamic wind load acting on a building is transformed into a set of multiple‐oriented equivalent static wind loads, which converts the optimal design for a building acted by dynamic loads into a simpler optimal design problem that considers only static loads. The objective function and constraint functions are explicitly formulated for various types of frame and area members, and consequently, the optimal design problem is mathematically modeled. The optimality criteria method is employed to seek a solution to the optimal design problem. A 68‐story actual supertall building with a height of 303 m is considered for a case study. The obtained results show that the presented technique is capable of giving a good numerical optimal solution for practical use. The technique and results obtained from this study are valuable for academic and professional engineers involved in wind engineering and structural design.  相似文献   

6.
The structural configurations of hillside buildings are significantly different than those observed on flat terrain. To study the effect of often observed structural configurations of hillside buildings, collapse fragility of regular “flat land (FL)” and irregular “split‐foundation (SF)” and “step‐back (SB)” buildings is studied using incremental dynamic analysis. The effects of building height, seismic zone, and near‐ and far‐field sites on collapse fragility are investigated. It is observed that SF and SB hillside buildings exhibit significant torsional effects at the storey just above the uppermost foundation level. In case of FL buildings, collapse occurs due to the flexural failure of beams and columns. On the other hand, in SF and SB buildings, the collapse occurs due to the combined effects of shear failure of short columns and flexural failure of beams and columns in the storey just above the uppermost foundation level. In general, SF buildings are observed to be the most vulnerable, whereas FL buildings are the least vulnerable. It is observed that high‐rise SF and SB buildings show unacceptably high probability of collapse at maximum considered earthquake, in Seismic Zone V and for the near‐field site in Seismic Zone IV.  相似文献   

7.
复杂高层建筑的震害在近来的历次地震中都有发生,其抗震分析和设计难度较大,提高其抗震性能是当前建筑抗震的难点之一。通过对近10年来国内在复杂高层建筑抗震方面的研究进行回顾和总结,重点介绍了组合剪力墙及筒体结构、钢管混凝土结构、结构模型振动台试验和三种消能减震方法。提出了采用新型高效的结构体系及高性能抗震部件或消能减震新技术改善复杂高层建筑抗震性能。这些研究工作与工程实践紧密结合,大部分研究成果已在实际工程中成功应用。图18参28  相似文献   

8.
基于三水准抗震设防的传统结构虽已逐步控制了建筑倒塌和人员伤亡,但造成的经济损失和社会影响仍然巨大.可恢复功能结构体系震后修复成本较小,能够减少地震造成的经济损失.但三水准抗震设防由于其局限性无法充分体现可恢复功能结构的优越性,因此,前期提出了可恢复功能结构体系的四水准抗震设防目标:小震及中震不坏,大震可更换、可修复,巨...  相似文献   

9.
Traditional coupling beams in coupled shear walls (CSWs) may be lack of required ductility or inconvenient to be fully repaired or replaceable after earthquake damage. To improve the CSW seismic performance, a type of new structural system, which is referred to as coupled shear walls with buckling‐restrained steel plates (CSW–BRSP), is proposed and thoroughly studied. In the system, a pair of individual concrete wall is coupled through buckling‐restrained steel plates instead of traditional concrete coupling beams. Based on the continuous medium method (CMM), stiffness and strength design formulas are developed for the seismic design of this system. Intensive investigations have been conducted to assess the undesirable axial forces in the buckling‐restrained steel plates induced by lateral loads. In order to facilitate the application of this system, a detailed design procedure is also explicitly stated. Finally, an example of typical high‐rise building is presented to illustrate the design procedure as well as demonstrate the excellent seismic performance of the proposed system by means of nonlinear time‐history analysis. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

10.
Shake table experiments are conducted to support the selection of performance criteria and to verify the inelastic modeling approach for developing the fragility functions of reinforced concrete buildings. Two frames representing the lateral force‐resisting system of a preseismic code building are tested under the effect of an earthquake record with increasing severity. Shear failure is detected in columns at a PGA of 1.28g before other failure modes, which was effectively predicted by the fiber‐based numerical model, performance criteria, and shear supply approaches adopted for vulnerability assessment. Five buildings, ranging from 2 to 40 stories, are then assessed under the effect of far‐field and near‐source earthquake records, considering the experimentally verified modeling approach and shear failure prediction models that account for flexural ductility and shear‐axial force interaction. The impact of considering shear response on the vulnerability assessment results is considerable, particularly for the lower‐height wall structures when subjected to the near‐source earthquake scenario. Higher modes dominate the behavior of wall structures, principally under the latter seismic scenario, and shift their response to shear‐controlled. Therefore, seismic scenario‐structure‐based performance criteria are adopted for developing a range of analytically derived, experimentally verified fragility functions for the earthquake loss estimation of buildings with different characteristics.  相似文献   

11.
最小地震剪力系数是隔震结构设计的关键控制因素之一。对等效周期为2~6s的单质点隔震体系在远场地震动(FF地震动)、近场含脉冲地震动(NFWP地震动)和近场不含脉冲地震动(NFWNP地震动)作用下的剪力系数分布特点进行分析,并将其与规程中有关最小地震剪力系数的相关规定进行对比,探寻在不同抗震设防烈度下,不能满足最小地震剪力系数的隔震结构的等效周期范围。以位于我国抗震设防烈度8度区的某隔震结构为例,采用三种不同的设计地震剪力取值方法,设计了6种不同的结构模型。通过模型的弹塑性时程分析,比较了地震动的近远场特性对各模型抗震性能的影响,及其在罕遇地震作用下的性能差异。分析结果表明:地震动的近远场特性对隔震结构的楼层设计剪力影响较大;对不满足最小地震剪力系数要求的隔震结构,采用放大设计地震剪力使其承载力满足最小地震剪力系数的方法,能够有效提高其抗震能力;不考虑最小地震剪力系数对结构设计地震剪力的限制,采用结构的实际地震剪力需求进行设计的隔震结构能够满足地震作用下的承载力和层间位移限值要求。  相似文献   

12.
Ping An Finance Center with a height of 600 m and 118 storeys, located in Shenzhen, is currently the second tallest building in China. This paper presents a comprehensive study of wind effects on the supertall building through wind tunnel testing and field measurement. The wind‐induced loads and pressures on the skyscraper were measured by high‐frequency force balance technique and synchronous multipressure sensing system, respectively. In the wind tunnel study, a whole range of characteristic properties, including mean and r.m.s force coefficients, power spectral densities, coherences, correlations, and phase‐plane trajectories, wind‐induced displacement, and acceleration responses were presented and discussed. In addition, a field measurement study of the dynamic responses of Ping An Finance Center was conducted during a tropical cyclone, which aimed to verify the design assumptions and further the understanding of the dynamic properties and performance of the 600‐m‐high supertall building, including natural frequencies, damping ratios, and wind‐induced structural responses. Then, the serviceability of the skyscraper is assessed on the basis of the experimental results and field measurements. The outcomes of this combined model test and field measurement study are expected to be useful for the wind‐resistant design of future supertall buildings.  相似文献   

13.
针对小震丙类、小震乙类、中震不屈服和中震弹性4个性能目标,采用增量动力时程分析方法(IDA)对钢筋混凝土框架结构的抗倒塌能力进行了分析。以小震丙类建筑为基准,研究结果表明:抗震措施和地震作用是影响结构抗震性能的重要因素;严格按照抗震规范设计的框架结构,具有较高的安全储备,基本上能够达到“大震不倒”的性能目标;6度设防时,按乙类建筑提高抗震措施或按中震性能目标提高设计地震作用,对结构的抗倒塌能力影响不大;7度设防时,按中震性能目标设计能显著提高结构的抗倒塌能力;8度设防时,提高抗震措施等级和提高设计地震作用都能够大幅提高结构的抗倒塌能力,尤其按中震设计的钢筋混凝土框架结构能够抵御加速度峰值1000gal以上的地震作用。  相似文献   

14.
Despite wide‐ranging studies on fragility analysis and collapse safety assessment of short to medium‐rise reinforced concrete (RC) structures, a new interest in the topic is still valuable and even necessary for tall RC buildings. This study aims at establishing fragility relationships as well as collapse probability of high‐rise RC core‐wall buildings under maximum considered earthquake ground motions. This study is carried out in a probabilistic framework on a case study of a fully 3‐dimensional numerical model developed to simulate seismic behavior of a 42‐story building having a RC core‐wall system. Proposing planar and vertical distributions of ductility and damage indices, the incremental dynamic analysis, and the multi‐direction nonlinear static (pushover) analyses were employed to reach the research goal. Median collapse‐level capacities were defined in terms of seismic responses (e.g., ductility/damage indices) as well as several intensity measures by employing statistical analyses and cumulative density functions. Available and acceptable collapse margin ratios were next estimated to quantify collapse safety at maximum considered earthquake shaking level. On an average basis, the statistics indicated 9%–10% and 5%–6% collapse probability of the building subjected to near‐ and far‐field ground motions, respectively.  相似文献   

15.
Opening ventilating holes on a supertall building is an effective way to reduce its wind‐induced structural response and enhance its wind‐resistant performance. However, its interference effect on the neighboring supertall buildings has seldom been studied yet. Taking two actual neighboring buildings, the Guangdong International Financial Center (IFC) and the Guangzhou Chow Tai Fook Finance Centre (CTF) as examples, this study carried out high‐frequency force balance wind tunnel tests to investigate the interference effect of the IFC's ventilating openings on the wind‐induced response of CTF. Results show that when CTF is located in the downstream area of IFC, the ventilating openings on IFC make the high‐energy frequency band of the power spectral density (PSD) of CTF's crosswind aerodynamic load offset obviously towards the lower frequency interval. Consequently, the wind‐induced response of CTF can be significantly magnified or minified depending on the reduced structural natural frequencies. Since the reduced natural frequency for the structural base bending moment computation is usually smaller than that for the acceleration response computation, ventilation openings on IFC can be advantageous to the crosswind base bending moment response relevant to structural safety design, and disadvantageous to the acceleration response relevant to occupant comfort assessment.  相似文献   

16.
实现RC剪力墙结构预期强震破坏模式的能力设计方法的不断改进,一直为工程师所关注。针对我国抗震设防烈度8度0.3g高烈度区RC剪力墙结构,设计了不同高度和整体性系数的结构模型,从而建立了预设延性破坏模式的分析模型。考虑大震变轴力对弯矩和剪力的影响,分析了剪力墙在大震作用的弯矩和剪力的实际需求沿结构高度的分布规律。结果表明,对于位于烈度8度0.3g区的剪力墙结构,考虑大震时轴力的变化对剪力墙受弯和受剪能力的需求影响较大;剪力墙的弯矩和剪力放大系数随结构的高度和整体性系数的增大而增大;现行规范规定的剪力墙受弯和受剪能力调整系数小于实际的需求,剪力墙中下部的弯矩和底部的剪力需求大,建议受弯能力调整沿高度采用三折线,提高剪力墙底部加强区的剪力放大系数或最小构造配筋率。  相似文献   

17.
This research deals with a frame-supported shear wall for urban over-track building of vehicle depot in Chisha, Guangzhou, China, which is characterized by its remarkable height of 160.8 m. Technical issues are commonly encountered in these kinds of buildings due to discontinuous vertical structural rigidity, large podium, and structural transition. These challenges significantly impact the engineering process, especially when the rigidity difference between transfer story exceeding the threefold, as well as the building height exceeds limit as in code. In this paper, a shaking table test was developed based on a 1:10 scaled model of the structure. Using similarity theory, the dynamic similarity relationship was established for the design of the model. Subsequently, the experimental model was constructed with the configuration of critical parameters such as mass design, sensor placement, and seismic test conditions. This was followed by in-depth analysis, recording component failures and investigating key aspects such as dynamic characteristics, that is, acceleration and displacement responses and shear force distribution under different earthquake intensities. A theoretical seismic response of the prototype structure was derived from the test results. The shaking table tests confirmed that the structure met the stringent seismic design requirements as prescribed in the Chinese standards, with no damage under minor earthquakes, repairability under moderate earthquakes, and collapse prevention under rare earthquakes. The results of the study provide valuable insights along with improvement measures for the design and development of similar urban over-track buildings, potentially contributing to more efficient land use in urban China.  相似文献   

18.
多层砖房按新规范(GBJ 11—89)抗震设计的简化方法   总被引:1,自引:0,他引:1       下载免费PDF全文
多层砖房在我国建造量道德而面广、是最常用的民用建筑承重结构。根据震害经验用钢筋砼圈梁和构造柱分割并包围砖砌体而使砖砌体结构形成弱框架体系,可大大提高其抗震性能。按照新规范GBJ 11-89中规定,本文分析了多层砖房抗震设计中的三水准设计要求和两阶段设计方法。并对砖抗震墙截面抗震承载力的验算提供了简化的计算方法,可省去按常规方法的求算基底剪力、计算楼层水平地震力和楼层地震剪力以及计算砖抗震墙的侧移刚度来分配楼层地震剪力的计算程序。从而能大大加快设计进度。  相似文献   

19.
To provide knowledge beyond the conventional engineering insights, attention in this work is focused on a comprehensive framework for the stochastic seismic collapse analysis and reliability assessment of large complex reinforced concrete (RC) structures. Three key notions are emphasized: the refined finite element modeling and analysis approach towards structural collapse, a physical random ground motion model, and an energy‐based structural collapse criterion. First, the softening of concrete material, which substantially contributes to the collapse of RC structures, is modeled by the stochastic damage constitutive model. Second, the physical random ground motion model is introduced to quantitatively describe the stochastic properties of the earthquake ground motions. And then the collapse‐resistance performance of a certain RC structure can be systematically evaluated on the basis of the probability density evolution method combining with the proposed structural collapse criterion. Numerical results regarding a prototype RC frame‐shear wall structure indicate that the randomness from ground motions dramatically affects the collapse behaviors of the structure and even leads to entirely different collapse modes. The proposed methodology is applicable in better understanding of the anti‐collapse design and collapse prediction of large complex RC buildings.  相似文献   

20.
Tall buildings are an important part of a city, and their earthquake-induced damage or collapse will lead to heavy losses, extended repair time, and casualties. Therefore, it is essential to quantify and improve the resilience of tall buildings. To this end, this paper develops a component damage-based metric to characterize tall buildings' functionality loss and then proposes a general quantitative evaluation process to evaluate tall buildings' resilience. Next, the evaluation process is applied to a 42-story reinforced concrete frame shear wall building to demonstrate its applicability. Finally, retrofit strategies on nonstructural components are discussed to enhance the building's resilience. It can be concluded that the proposed metric can be effectively used to evaluate tall buildings' functionality loss. The building being studied has great seismic resilience, with resilience values of 99.95%, 98.68%, and 88.69% at service level earthquake (SLE), design level earthquake (DBE), and maximum considered earthquake (MCE), respectively. The influence of nonstructural components on seismic resilience is greater than that of structural components at SLE and DBE levels. It is an effective alternative to enhance the seismic resilience of tall buildings under SLE and DBE by improving the performance of partition walls, ceilings, and equipment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号