首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
电弧炉炼钢广泛采用集束射流供氧技术以强化熔池搅拌、加速冶金反应和提升产品质量.本文利用数学分析方法推导出射流冲击深度理论计算模型并进行了修正, 利用数值模拟和水模型实验方法验证所推导计算模型的可靠性.实验结果表明:集束射流与普通超音速射流的冲击深度规律相似.同射流条件下, 随着氧枪枪位的提升, 冲击深度逐渐减小;同枪位条件下, 集束射流冲击深度大于普通超音速射流冲击深度;集束射流的k值和射流轴线密度大于普通超音速射流, 这表现为相同氧枪枪位条件下, 集束射流的冲击深度更深.  相似文献   

2.
为进一步提高集束氧枪对熔池的冲击搅拌效果, 重点分析了在两种环境下, 不同环流布置模式对超音速氧气射流流场与冲击能力的作用效果.通过对比在高温喷射试验与数值模拟研究结果, 分析射流轴向速度与射流总温流动状态, 研究不同环流布置模式下集束射流冲击特性.通过分析不同数量网格的可靠性, 选取合适的数值模拟模型, 并采用涡耗散概念模型和多步燃烧反应机理计算超音速状态下氧气与甲烷的混合与燃烧过程.研究结果表明数值模拟结果与高温喷射试验数据吻合程度较好.环流布置对拉瓦尔管出口流速无明显影响, 主氧射流核心段随环流孔径与主氧射流间距的增大, 有先提高后下降的趋势, 且不同环流布置模式对主氧核心段均有延长效果.  相似文献   

3.
The coherent jet technology was widely used to improve the stirring effect of molten bath in steelmaking field, and the key to this technology was to form a low-density zone around the main oxygen jet by a high-temperature shrouding flame. With this revelation, a shrouding nozzle was processed to a Laval nozzle structure fitted with a loop arrangement for increasing the velocity of shrouding jet. For further increasing the area of the low-density zone, the preheating method was also adopted in this new coherent lance structure. In this paper, the effect of Mach number of the shrouding nozzle on the flow field of the coherent jet was investigated at room and high ambient temperature using numerical simulation and experimental studies. The result represented the simulation model used in this research showed good agreement with the experimental data at the texted conditions. Although the shock wave formed by the shrouding jet removed more kinetic energy form the main oxygen jet, the impaction ability of the coherent jet was much bigger than that of conventional supersonic jet, and this phenomenon would be further strengthen if ambient temperature and Mach number of the shrouding nozzle increases.  相似文献   

4.
吕明  庞焯刚  李小明  王建立 《钢铁》2019,54(7):35-41
 利用Fluent软件研究了转炉炼钢不同枪位条件下的顶吹气体射流特性,并与理论计算结果对比分析。发现单孔氧枪数值模拟的冲击深度小于理论计算值、冲击面积大于理论计算值,且随着枪位的提高,冲击深度差值变小,冲击面积差值变大。在此基础上,研究了100 t转炉采用4孔超音速氧枪的射流冲击特性,发现当枪位为1.0 m时,冲击深度为0.21 m,冲击面积仅为1.328 m2,与计算值相差较大;当枪位提高至1.5 m时,冲击深度模拟结果为0.12 m,计算值为0.83 m,冲击面积模拟结果和计算值相差增大。  相似文献   

5.
Top-blow injection of a gas?Csolid jet through a circular lance is used in the Mitsubishi Continuous Smelting Process. One problem associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas?Csolid jet rather than the circular jet was designed in this laboratory. With this new configuration, the solid particles fed through the center tube leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different from that with a circular lance where the solid particles leave the lance at the same high velocity as the gas. In previous cold-model investigations in this laboratory, the effects of the gas velocity, particle feed rate, lance height of the annular lance, and the cross-sectional area of the gas jet were studied and compared with the circular lance. This study examined the effect of the density and size of the solid particles on the penetration behavior of the annular gas?Csolid jet, which yielded some unexpected results. The variation in the penetration depth with the density of the solid particles at the same mass feed rate was opposite for the circular lance and the annular lance. In the case of the circular lance, the penetration depth became shallower as the density of the solid particles increased; on the contrary, for the annular lance, the penetration depth became deeper with the increasing density of particles. However, at the same volumetric feed rate of the particles, the density effect was small for the circular lance, but for the annular lance, the jets with higher density particles penetrated more deeply. The variation in the penetration depth with the particle diameter was also different for the circular and the annular lances. With the circular lance, the penetration depth became deeper as the particle size decreased for all the feed rates, but with the annular lance, the effect of the particle size was small. The overall results including the previous work indicated that the penetration behavior of an annular jet is much less sensitive to the variations in operating variables than that of a circular jet. Correlation equations for the penetration depth that show good agreements with the measured values have been developed.  相似文献   

6.
胡绍岩  朱荣  董凯 《工程科学学报》2018,40(S1):108-115
以某钢厂的110 t复吹转炉为原型, 建立三维全尺寸几何模型, 通过数值模拟的方法研究了环境温度对多流股超音速氧气射流特性的影响, 并对比分析了常温和炼钢温度下氧气射流对转炉熔池的冲击搅拌效果.研究结果表明:随着环境温度的升高, 氧气射流的速度衰减减慢, 射流流股半径增大, 与此同时, 射流本身的温度升高、密度降低, 导致射流动压的增加幅度低于射流速度的增加幅度;而且, 高温环境中射流的聚合现象被抑制.在多相流研究中发现, 当环境温度由300 K提高至1723K时, 氧气射流的冲击深度由0.11035 m升高至0.14807 m, 冲击深度增大了34.18%, 熔池平均速度有一定提高, 说明在多相流研究中环境温度的影响不容忽略.  相似文献   

7.
吕明  陈双平  李航  张朝晖  李涛  刘坤龙 《钢铁》2022,57(8):78-88
 转炉氧枪喷头会随枪龄的增加发生不同程度的侵蚀,为了探究氧枪喷头侵蚀程度对超音速气体射流吹炼特性的影响,建立了120 t转炉及超音速氧枪的三维全尺寸几何模型,研究了氧枪喷头不同磨损角度对气体射流特性、熔池速度及壁面侵蚀的影响。发现随着磨损角度增加,射流速度衰减加快,射流核心区长度缩短,同一等速线长度缩短,射流中心最大速度和最大速度点距中心距离增大。射流动压衰减速度随磨损角度增加而加快,磨损角度由0增至20°,距喷头端面1.5 m处最大动压减小了14.84%,14 000 Pa等压线包围面积由0.038 m2减小至0.002 m2。钢液面处高速区面积随着磨损角度增加而减小,死区面积随着磨损角度增加而增大。熔池纵截面高速区域主要分布在冲击凹坑和底吹元件附近,低速区域主要分布在熔池底部,死区主要分布在熔池底部中心和炉壁下部区域。当熔池深度小于0.6 m时,顶吹气流对熔池的搅拌起主要作用,磨损角度增加,熔池搅拌能力变弱,熔池横截面高速区面积减小,低速区和死区面积增大;当熔池深度大于0.6 m时,底吹气流对熔池搅拌起主要作用,高速区面积基本不变。渣-金作用区域和底吹流股附近流体湍动能较大、壁面剪切应力较为集中,该部位耐火材料侵蚀严重。熔池壁面附近流体湍动能和壁面剪切力随磨损角度增加而降低,转炉炉衬侵蚀速度减小。  相似文献   

8.
The top-blow injection technique of a gas–solid mixture through a circular lance is used in the Mitsubishi Continuous Smelting Process. One of the inherent problems associated with this injection is the severe erosion of the hearth refractory below the lances. A new configuration of the lance to form an annular gas–solid jet rather than a circular jet was designed in the laboratory scale. With this new configuration, solid particles leave the lance at a much lower velocity than the gas, and the penetration behavior of the jet is significantly different than with the circular lance in which the solid particles leave the lance at the same high velocity as the gas. The results of cold model tests using an air-sand jet issuing from a circular lance and an annular lance into a water bath showed that the penetration of the annular jet is much less sensitive to the variations in particle feed rate as well as gas velocity than that of the circular jet. Correlation equations for the penetration depth for both circular and annular jets show agreement among the experimentally obtained values.  相似文献   

9.
通过90 t转炉的传统氧枪喷孔周围增加环氧孔,通人辅助氧气保护主氧射流形成聚合状态,建立二维两相数值模型,分析传统氧枪和聚合射流氧枪射流轴线上氧气射流速度分布及不同枪位下熔池中钢液的流动特性和冲击深度。结果表明,与传统氧枪相比,枪位相同时,聚合射流氧枪射流衰减慢,冲击力大,冲击凹坑深度深;在30De(De-氧枪出口直径)枪位下的最大冲击深度与20De枪位下的传统氧枪相同,当聚合射流氧枪在40De枪位下喷吹得平均冲击深度与传统氧枪20De枪位喷吹时相当。  相似文献   

10.
Coherent jets are widely used in electric arc furnace(EAF)steelmaking to increase the oxygen utilization and chemical reaction rates.However,the influence of fuel gas combustion on jet behavior is not fully understood yet.The flow and combustion characteristics of a coherent jet were thus investigated at steelmaking temperature using Fluent software,and a detailed chemical kinetic reaction mechanism was used in the combustion reaction model.The axial velocity and total temperature of the supersonic jet were measured via hot state experiments.The simulation results were compared with the experimental data and the empirical jet model proposed by Ito and Muchi and good consistency was obtained.The research results indicated that the potential core length of the coherent jet can be prolonged by optimizing the combustion effect of the fuel gas.Besides,the behavior of the supersonic jet in the subsonic section was also investigated,as it is an important factor for controlling the position of the oxygen lance.The investigation indicated that the attenuation of the coherent jet is more notable than that of the conventional jet in the subsonic section.  相似文献   

11.
以鞍钢180 t顶底复吹转炉为原型,设计超音速氧枪喷头进行了复吹转炉传统射流与聚合射流对熔池相互作用的水力学模型实验。超音速射流水模实验确定最佳的均混时间为12.6 s;在保持最佳顶吹气体流量的条件下,以降低枪位模拟聚合射流对熔池的相互作用。结果表明:当氧枪枪位下降到40 mm时,均混时间为11.8 s,这说明聚合射流完全可以达到传统射流对熔池的搅拌效果,可取消底吹系统,简化转炉设备和提高转炉炉龄。  相似文献   

12.
The top-blowing supersonic oxygen jet is now used widely in steelmaking and metal refining processes. However, the ambient temperature and oxygen flow rate is changed during top-blowing process, making the flow field of supersonic oxygen jet unstable. Hence, it is very important to research the behaviour of supersonic oxygen jet in high ambient temperature. In the present study, the supersonic coherent jet flow fields with 2 kinds of Laval nozzle structures were analysed at various ambient temperature conditions. The total temperature and axial velocity were measured by experiment to verify simulation results. Based on the results, the design method of characteristic-line equation could be more effective in the control the velocity vector of oxygen jet, compared with the one-dimension isoentropic flow theory. As a result, the Laval nozzle designed by characteristic-line equation could suppress the forming of shock wave, reduce the radial velocity and increase the stirring ability of oxygen jet under various ambient conditions.  相似文献   

13.
This work aimed at investigating the penetration depth in a water model during lance blowing. A study of accessible literature was carried out to summarise previous work that had studied penetration depth. Based on the literature study an experimental plan was devised consisting of experiments focused on studying the effect of nozzle diameter, lance height and flow rate on the penetration depth. However, the primary focus was on studying the effect of small nozzle diameters on the penetration depth, which has not previously been reported in the literature. It was found that the results of the experiments in general agreed well with previous work, namely: the penetration depth increases with decreasing nozzle diameter, decreasing lance height and increasing gas flow rate. All equations known previously were used to calculate the penetration depth based on current experimental data. Thereafter, it was deduced which of the empirical relationships best fitted the experimental data. The jet momentum number was also determined from the experimental data and it was found that the penetration depth increased with an increased jet momentum number. However, for smaller nozzle diameters there was a considerable deviation. Therefore, a new correlation was suggested, heuristically derived from a macroscopic energy conservation consideration, and it was shown to result in better agreement between experiments and predictions for small nozzle diameters.  相似文献   

14.
为了研究转炉炼钢氧气射流的应用情况,利用FLUENT软件模拟研究了集束氧气射流,并对比了集束射流和超音速射流的射流特性.在某厂35t转炉进行了集束射流的初步工业试验.试验结果表明:使用集束氧枪后的转炉炼钢脱磷效率提高,钢铁料消耗及氧气消耗均有所下降.  相似文献   

15.
为了确定适用于超音速射流流场数值模拟的湍流模型,首先从理论上分析常用的五种湍流模型之间的差异及其适用范围;其次,采用五种湍流模型,分别对不同马赫数下超音速射流流场进行数值模拟,将数值模拟结果与实测值和理论值进行对比分析.结果表明:剪切压力传输k-ω模型与其他模型相比,通过对输运方程的修正,保证其在计算射流流场时具有较高的准确性;在喷管内部和外部射流流场的模拟中,剪切压力传输k-ω模型的计算结果与理论值和实测值具有较高的吻合度,在五种湍流模型中最适合于超音速射流流场的数值模拟研究.  相似文献   

16.
超音速氧气射流技术是炼钢精炼过程中的重要环节,关于常压条件下超音速氧气射流的特性已进行了大量的研究,但对真空精炼过程中低压环境下的超音速氧气射流特性目前研究较少。通过数值模拟的方法研究了不同环境压力条件下超音速氧气射流的特性,并与试验结果进行了对比分析。研究结果表明:低压环境条件与高压环境条件相比,超音速氧气射流速度的衰减受到抑制,射流核心段的长度得到延长;不同环境压力条件下,射流压力与射流速度分布趋势一致,均沿轴向不断降低,但压力衰减程度大于速度衰减的程度;不同环境压力条件下,氧气射流的温度随着氧气射流的扩散不断升高,最终趋于环境温度。  相似文献   

17.
Supersonic coherent gas jets are now used widely in electric arc furnace steelmaking and many other industrial applications to increase the gas–liquid mixing, reaction rates, and energy efficiency of the process. However, there has been limited research on the basic physics of supersonic coherent jets. In the present study, computational fluid dynamics (CFD) simulation of the supersonic jet with and without a shrouding flame at room ambient temperature was carried out and validated against experimental data. The numerical results show that the potential core length of the supersonic oxygen and nitrogen jet with shrouding flame is more than four times and three times longer, respectively, than that without flame shrouding, which is in good agreement with the experimental data. The spreading rate of the supersonic jet decreased dramatically with the use of the shrouding flame compared with a conventional supersonic jet. The present CFD model was used to investigate the characteristics of the supersonic coherent oxygen jet at steelmaking conditions of around 1700 K (1427 °C). The potential core length of the supersonic coherent oxygen jet at steelmaking conditions was 1.4 times longer than that at room ambient temperature.  相似文献   

18.
利用带有中心主孔的Laval喷管和16个副孔的聚合射流氧枪喷头的氧枪射流检测系统研究氧枪射流中心速度的衰减规律,测试常温氦气代替高温燃烧的保护气体作为伴流而产生的聚合射流,以及高温以主孔通空气,两副孔分别通入氧气和丙烷来产生保护气体模拟的聚合射流。结果表明,聚合射流特性优于传统射流特性,常温下随氦气入口压力增加,中心射流的轴向衰减变缓,获得比传统超音速射流更长的超声速区域;高温下通过调节燃气和氧气流量可改变环状火焰长度,同时可以根据生产实际情况变化主射流长度,满足冶炼工艺要求。  相似文献   

19.
激波在转炉炼钢中的应用   总被引:1,自引:0,他引:1  
激波是超音速气流中液体属性的不连续面,气流通过激波时速度下降,温度和压强升高。氧气转炉炼钢的氧气是通过拉瓦尔管以超音速射流状态吹入转炉。在氧枪喷头设计和制定供氧制度时要减小激波损失。在转炉的某些特殊吹炼工艺中要把激波控制在适当范围内,以取得良好的冶金效果。  相似文献   

20.
利用GAMBIT建立了轴向计算长度2 200 mm和径向计算长度800 mm的超音速氧枪的数学模型,并采用FLUENT软件对氧枪射流特性进行数值仿真研究。分析了单孔氧枪超音速射流特性,以及操作压力(0.6~1.0 MPa)和环境温度(298~1 873 K)对流动特性的影响。结果表明,入口滞止压力在设计压力±25%内对射流轴向衰减及径向扩展影响不大,其与射流的超音速区长度呈二次曲线关系变化,随环境温度升高,射流轴向衰减变缓慢,核心区长度增加,超音速区长度和环境温度呈线性关系,环境温度对射流径向影响很小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号