首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanism of CD4-mediated fusion via activated human immunodeficiency virus type 1 (HIV-1) gp41 and the biological significance of soluble CD4 (sCD4)-induced shedding of gp120 are poorly understood. The purpose of these investigations was to determine whether shedding of gp120 led to fusion activation or inactivation. BJAB cells (TF228.1.16) stably expressing HIV-1 envelope glycoproteins (the gp120-gp41 complex) were used to examine the effects of pH and temperature on sCD4-induced shedding of gp120 and on cell-to-cell fusion (syncytium formation) with CD4+ SupT1 cells. sCD4-induced shedding of gp120 was maximal at pH 4.5 to 5.5 and did not occur at pH 8.5. At physiologic pH, sCD4-induced shedding of gp120 occurred at 22, 37, and 40 degrees C but neither at 16 nor 4 degrees C. In contrast, syncytia formed at pH 8.5 (maximally at pH 7.5) but not at pH 4.5 to 5.5. At pH 7.5, syncytia formed at 37 and 40 degrees C but not at 22, 16, or 4 degrees C. Preincubation of cocultures of TF228.1.16 and SupT1 cells at 4, 16, or 22 degrees C before the shift to 37 degrees C resulted in similar, increased, or decreased syncytium formation, respectively, compared with the control. Furthermore, an activated intermediate of CD4-gp120-gp41 ternary complex may form at 16 degrees C; this intermediate rapidly executes fusion upon a shift to 37 degrees C but readily decays upon a shift to the shedding-permissive but fusion-nonpermissive temperature of 22 degrees C. These physicochemical data indicate that shedding of HIV-1 gp120 is not an integral step in the fusion cascade and that CD4 may inactivate the fusion complex in a process analogous to sCD4-induced shedding of gp120.  相似文献   

2.
To evaluate conserved structures of the surface gp120 subunit (SU) of the human immunodeficiency virus type 1 (HIV-1) envelope in gp120-cell interactions, we designed and produced an HIV-1 IIIB (HXB2R) gp120 carrying a deletion of amino acids E61 to S85. This sequence corresponds to a highly conserved predicted amphipathic alpha-helical structure located in the gp120 C1 region. The resultant soluble mutant with a deleted alpha helix 1 (gp120 DeltaalphaHX1) exhibited a strong interaction with CXCR4, although CD4 binding was undetectable. The former interaction was specific since it inhibited the binding of the anti-CXCR4 monoclonal antibody (12G5), as well as SDF1alpha, the natural ligand of CXCR4. Additionally, the mutant gp120 was able to bind to CXCR4(+)/CD4(-) cells but not to CXCR4(-)/CD4(-) cells. Although efficiently expressed on cell surface, HIV envelope harboring the deleted gp120 DeltaalphaHX1 associated with wild-type transmembrane gp41 was unable to induce cell-to-cell fusion with HeLa CD4(+) cells. Nevertheless, the soluble gp120 DeltaalphaHX1 efficiently inhibited a single round of HIV-1 LAI infection in HeLa P4 cells, with a 50% inhibitory concentration of 100 nM. Our data demonstrate that interaction with the CXCR4 coreceptor was maintained in a SUgp120 HIV envelope lacking alphaHX1. Moreover, in the absence of CD4 binding, the interaction of gp120 DeltaalphaHX1 with CXCR4 was sufficient to inhibit HIV-1 infection.  相似文献   

3.
The interaction of the human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 with CD4 CDR3-related peptide derivatives showing anti-HIV-1 activity has been studied. Conformational changes in gp120, which could affect its interaction with CD4 and its shedding from virions, were detected by fluorescence spectrum analysis of tryptophan residues after addition of peptide representative of the CD4 CDR3-related region, but not the CD4 CDR2-related region. Interestingly, the addition of scrambled peptide, S1 (with altered amino acid sequence compared with the native CDR3-related peptide but unaltered overall composition), which we recently showed to have stronger anti-HIV-1 activity than the original CDR3-related peptide, had no effects on the conformational change in gp120 or on its interaction with CD4 and its shedding from HIV-1 virions. However, all of the CDR3-related peptides, including S1, showed blocking effects on the binding of antibodies against gp120 V3 loop and C-terminus regions. Thus, we concluded that there were at least two separable activities of the CDR3-related peptides in anti-HIV-1 activity, i.e. induction of conformational changes in gp120, which could affect its binding to CD4 and to gp41 (as observed in native CDR3-related peptides), and inactivation of V3 loop and C-terminus regions in gp120 (as observed in all of the CDR3-related peptides, including S1).  相似文献   

4.
Peptides representing a sequence of 23 amino acid residues at the N terminus of human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp41 bind and subsequently induce fusion of large unilamellar vesicles (LUV), an activity presumably related to gp41 function in viral infection. These in vitro effects can be modulated by several factors that are known to affect HIV-1 infectivity and gp41-mediated virus-cell fusion. Peptide-induced membrane fusion but not peptide binding can be inhibited by two factors known to block gp41 activity: a polar amino acid substitution V --> E in position 2 and the presence of the N-terminal hexapeptide of gp41 in addition to the parent sequence. Whereas inclusion of the alternative gp120 receptor galactosylceramide in membranes has virtually no effect, membrane cholesterol stimulates fusion activity. In view of its putative physiological relevance, we have used the fusion activity of the peptides as a tool to evaluate the inhibitory effect of antivirals that might target this sequence. We describe three dissimilar effects: Amphotericin B inhibits in a cholesterol-independent way peptide-induced fusion but not binding, human serum albumin inhibits binding and consequently fusion, and dextran sulfate (M(r) 5000) does not affect either binding or fusion.  相似文献   

5.
The safety and immunogenicity of candidate human immunodeficiency virus type 1 (HIV-1) vaccines have been studied in > 1500 healthy, seronegative (HIV-1-uninfected) subjects. HIV-1 envelope proteins, gp160 and gp120, have been the most extensively investigated. A live virus vector construct, vaccinia with insertion of the HIV-1 env gene, has also been studied. HIV-1 candidate vaccines have been well tolerated, with no acute or longer-term serious toxicity. Intramuscular multidose gp120 vaccines induce neutralizing antibodies, lymphoproliferative responses, and anti-HIV-1 CD4 cytotoxic T cell (CTL) activity. Immunization with the vaccinia-env construct, followed by a boost with an envelope protein, also induces neutralizing antibodies, and anti-HIV-1 CTL activity (CD8, major histocompatibility complex class I-restricted) has been observed. To date, serum from vaccinees can neutralize laboratory-adapted HIV-1 strains in vitro but not primary isolates; the significance of this observation is unknown. Additional approaches to vaccination against HIV-1 are in development.  相似文献   

6.
A majority of monoclonal antibodies (mAbs) raised against soluble oligomeric human immunodeficiency virus type 1 isolate IIIB (HIV-1IIIB) envelope (env) glycoprotein reacted with conformational epitopes within the gp120 or gp41 subunits. Of 35 mAbs directed against gp41, 21 preferentially reacted with oligomeric env. A subset of these mAbs reacted only with env oligomers (oligomer-specific mAbs). In contrast, only 1 of 27 mAbs directed against the gp120 subunit reacted more strongly with env oligomers than with monomers, and none were oligomer-specific. However, 50% of anti-gp120 mAbs preferentially recognized monomeric env, suggesting that some epitopes in gp120 are partially masked or altered by intersubunit contacts in the native env oligomer. Two mAbs to oligomer-dependent epitopes in gp41 neutralized HIV-1IIIB and HIV-1SF2, and binding of these mAbs to env was blocked by preincubation with HIV-1-positive human serum. Thus, immunization with soluble, oligomeric env elicits antibodies to conserved, conformational epitopes including a newly defined class of neutralizing antibodies that bind to oligomer-specific epitopes in gp41, and may also minimize the production of antibodies that preferentially react with monomeric env protein.  相似文献   

7.
The substantial virus lysis was induced by HIV-1-infected patient serum and normal human complement serum in the presence of purified patient IgG. Non-infected CD4+ T cells coated with the whole virus or with a recombinant HIV-1 envelope gp120 and sensitised with patient IgG were also shown to be susceptible to complement-dependent lysis. The serum level of complement regulatory protein in a fluid phase, the C1-esterase inhibitor, was significantly correlated with serum concentration of C1q-circulating immune complexes (P=0.0062), but inversely with CD4+ T cell count (P < 0.0001). Accordingly, the disease progression in HIV-1-infected patients was significantly correlated with the level of complement activation as determined by serum level of C1-esterase inhibitor (P=0.0001), and inversely correlated with CD4+ cell count (P < 0. 0001) and gp120-specific antibody titre (P=0.0086). These results strongly suggest that the complement activation by gp120-specific antibodies play a very important role in virus clearance, but also in depletion of infected as well as gp120-coated non-infected CD4+ bystander T cells during the course of HIV-1 infection.  相似文献   

8.
Based on our finding that a similar epitope exists between human IFN-beta (aa128-134) and HIV-1 gp41 (aa586-595), we examined 20 sera from healthy and 20 from HIV-1 infected individuals for IFN-beta antibody levels by ELISA. The levels of anti-IFN-beta antibody in sera from HIV-infected individuals were increased by about 160% in comparison with HIV-negative. We affinity-purified anti-gp41 antibodies from sera of HIV-1-infected individuals using rsgp41-sepharose column. One of three antibodies could recognize human IFN-beta in comparison with antibodies from serum of a healthy individual. A mouse antiserum to human IFN-beta recognized rsgp41 (recombinant soluble gp41 Env amino acid 539-684), while the normal mouse serum (pre-immune serum) did not bind to rspg41. These results indicate that a common immunological epitope exists between human IFN-beta and HIV-1 gp41. The sequence-similarity suggests that this common immunological epitope may be located in the region aa128-134 of human IFN-beta and the immunosuppressive domain (aa583-599) of HIV-1 gp41. The increased levels of antibodies against interferon-beta in HIV-1 positive individuals may be explained by a common immunological epitope on human IFN-beta and HIV-1 gp41.  相似文献   

9.
Antibodies that neutralize primary isolates of human immunodeficiency virus type 1 (HIV-1) appear during HIV-1 infection but are difficult to elicit by immunization with current vaccine products comprised of monomeric forms of HIV-1 envelope glycoprotein gp120. The limited neutralizing antibody response generated by gp120 vaccine products could be due to the absence or inaccessibility of the relevant epitopes. To determine whether neutralizing antibodies from HIV-1-infected patients bind to epitopes accessible on monomeric gp120 and/or oligomeric gp140 (ogp140), purified total immunoglobulin from the sera of two HIV-1-infected patients as well as pooled HIV immune globulin were selectively depleted of antibodies which bound to immobilized gp120 or ogp140. After passage of each immunoglobulin preparation through the respective columns, antibody titers against gp120 and ogp140 were specifically reduced at least 128-fold. The gp120- and gp140-depleted antibody fraction from each serum displayed reduced neutralization activity against three primary and two T-cell line-adapted (TCLA) HIV-1 isolates. Significant residual neutralizing activity, however, persisted in the depleted sera, indicating additional neutralizing antibody specificities. gp120- and ogp140-specific antibodies eluted from each column neutralized both primary and TCLA viruses. These data demonstrate the presence and accessibility of epitopes on both monomeric gp120 and ogp140 that are specific for antibodies that are capable of neutralizing primary isolates of HIV-1. Thus, the difficulties associated with eliciting neutralizing antibodies by using current monomeric gp120 subunit vaccines may be related less to improper protein structure and more to ineffective immunogen formulation and/or presentation.  相似文献   

10.
We compared the performance of second and third generation ELISA assays to detect antibodies to HIV-1 virus with conventional Western blotting (WB) and radioimmune Western blotting (RIWB). Both sera from commercial seroconversion panels and serial dilutions of a serum for HIV-1 antibodies were tested with Murex HIV Recombinant, Vidas bioMérieux HIV 1/2 (2nd generation ELISA) Murex HIV 1-2 (3rd generation ELISA), as well as with WB and RIWB. In seroconversion panels all ELISA assays were positive for the same serum with the exception of the first serum of Panel D which was negative with both sample Murex assays and borderline with Vidas assay. This serum was negative with WB but evidenced antibodies to gp160 p66, p51, p24 HIV-1 proteins when assayed by RIWB. In only two cases did WB reveal antibodies to HIV-1 proteins before ELISA assays (Panel A and E); not only did RIWB show the same sensitivity as WB in the two last panels, but it also detected antibodies to HIV-1 proteins earlier than WB, ranging from a few days (Panel C) to approximately 12 weeks (Panel D). The results obtained by testing the dilutions of the serum positive for anti HIV-1 antibodies showed the following degrees of sensitivity: Murex HIV 1-2 (the most sensitive), Murex HIV Recombinant and Vidas bioMérieux HIV 1/2. Although WB was more sensitive than the ELISA assays and picked out antibodies to gp160, gp120 and p24 HIV proteins at 1/4000 serum dilution, the most sensitive test was RIWB which at 1/20,000 serum dilution enabled detection of antibodies to gp160, p66 and p24 HIV proteins.  相似文献   

11.
A triterpene derived from betulinic acid (RPR103611) blocks human immunodeficiency virus type 1 (HIV-1) infection and fusion of CD4+ cells with cells expressing HIV-1 envelope proteins (gp120 and gp41), suggesting an effect on virus entry. This compound did not block infection by a subtype D HIV-1 strain (NDK) or cell-cell fusion mediated by the NDK envelope proteins. The genetic basis of drug resistance was therefore addressed by testing envelope chimeras derived from NDK and a drug-sensitive HIV-1 strain (LAI, subtype B). A drug-resistant phenotype was observed for all chimeras bearing the ectodomain of NDK gp41, while the origins of gp120 and of the membrane anchor and cytoplasmic domains of gp41 had no apparent role. The envelope gene of a LAI variant, fully resistant to the antiviral effect of RPR103611, was cloned and sequenced. Its product differed from the parental sequence at two positions in gp41, with changes of arginine 22 to alanine (R22A) and isoleucine 84 to serine (I84S), the gp120 being identical. In the context of LAI gp41, the I84S substitution was sufficient for drug resistance. Therefore, in two different systems, differences in gp41 were associated with sensitivity or resistance to RPR103611. Modifications of gp41 can affect the quaternary structure of gp120 and gp41 and the accessibility of gp120 to antiviral agents such as neutralizing antibodies. However, a direct effect of RPR103611 on a gp41 target must also be envisioned, in agreement with the blocking of apparently late steps of HIV-1 entry. This compound could be a valuable tool for structure-function studies of gp41.  相似文献   

12.
The human immunodeficiency virus HIV-1 establishes persistent infections in humans which lead to acquired immunodeficiency syndrome (AIDS). The HIV-1 envelope glycoproteins, gp120 and gp41, are assembled into a trimeric complex that mediates virus entry into target cells. HIV-1 entry depends on the sequential interaction of the gp120 exterior envelope glycoprotein with the receptors on the cell, CD4 and members of the chemokine receptor family. The gp120 glycoprotein, which can be shed from the envelope complex, elicits both virus-neutralizing and non-neutralizing antibodies during natural infection. Antibodies that lack neutralizing activity are often directed against the gp120 regions that are occluded on the assembled trimer and which are exposed only upon shedding. Neutralizing antibodies, by contrast, must access the functional envelope glycoprotein complex and typically recognize conserved or variable epitopes near the receptor-binding regions. Here we describe the spatial organization of conserved neutralization epitopes on gp120, using epitope maps in conjunction with the X-ray crystal structure of a ternary complex that includes a gp120 core, CD4 and a neutralizing antibody. A large fraction of the predicted accessible surface of gp120 in the trimer is composed of variable, heavily glycosylated core and loop structures that surround the receptor-binding regions. Understanding the structural basis for the ability of HIV-1 to evade the humoral immune response should assist in the design of a vaccine.  相似文献   

13.
The reactivities of 1,172 serum samples obtained from asymptomatic human immunodeficiency virus type 1 (HIV-1)-positive and HIV-1-negative individuals residing in Mexico to a synthetic disulfide-looped peptide from the HIV-1 gp41 (amino acids 602 to 616 [IWGCSGKLICTTAVP] were examined by an enzyme-linked immunoadsorbent assay (ELISA) procedure. Antibodies to the synthetic peptide were detected in 261 of 268 serum samples from HIV-positive individuals (sensitivity, 97.4%). The peptide also reacted with 12 of 904 serum samples from control HIV-negative individuals (specificity, 98.7%). Western blots (immunoblots) of four of the seven serum samples that produced false-negative results in the ELISA showed that three of them reacted weakly with gp41 and strongly with gp120, p55, and/or p24. Potential diagnostic difficulties raised by the reported C1q binding capacity of this peptide were also evaluated: few and weak false-positive results were found among sera from patients with rheumatoid arthritis (1 of 31) and neurocysticercosis (2 of 111). In fact, strong reactivity with the peptide spotted an undetected HIV infection underlying clinical neurocysticercosis.  相似文献   

14.
This work tests the hypothesis that chronic alcohol intoxication suppresses the microbicidal activity of Kupffer cells by modulating the expression of cell surface receptors associated with respiratory burst and the release of potent microbicidal agents [i.e., reactive oxygen species (ROS)]. Because alcohol is also a potential risk factor in human immunodeficiency virus-1 (HIV-1) infection, this study examines the effect of HIV-1 glycoprotein 120 (gp120)-induced ROS release by isolated Kupffer cells. After 16 weeks of ethanol feeding, Kupffer cells from male Sprague-Dawley rats were isolated and assayed for HIV-1 gp120-induced superoxide release. Fluorescein isothiocyanate (FITC)-HIV-1 gp120 binding, NADPH oxidase, and protein kinase C activity in Kupffer cells were measured. Results show that HIV-1 gp120 induced the release of superoxide anion in a dose-dependent manner in normal rats. Mannosylated-bovine serum albumin inhibited FITC-HIV-1 gp120-mediated superoxide release in normal Kupffer cells by 85%. Moreover, 83 +/- 6% of Kupffer cells were FITC-HIV 1 gp120-positive, whereas <30% were CD4-positive. In alcohol-fed rats, HIV-1 gp120-induced ROS release was reduced by 70% and FITC-HIV-1 gp120 binding (in terms of fluorescence intensity per 10[6] Kupffer cells) by 44% in Kupffer cells, without any change in percent positive cells for this ligand. Concomitantly, HIV-1 gp120-induced translocation of NADPH oxidase to the plasma membranes of Kupffer cells in alcohol-fed rats was suppressed by 60%. In contrast, alcohol consumption significantly increased total protein kinase C activity and phorbol ester-induced superoxide release by Kupffer cells. These studies demonstrate that Kupffer cells are likely targets of HIV-1 whose binding sites on macrophages could also include mannose-specific receptors. These observations further suggest that suppression of HIV-1 gp120-mediated ROS production in chronic alcoholics is due to altered cell surface receptor expression for gp120, and defective postreceptor signaling mechanisms, which in turn could lead to attenuated microbicidal activity of hepatic macrophages.  相似文献   

15.
In a previous report we have shown that, in contrast to antibodies produced against native or fully deglycosylated human immunodeficiency virus type 1 (HIV-1) gp160 in rabbits, antibodies raised against desialylated HIV-1 gp160 also recognize gp140 from HIV-2 at high titers. Here, we characterize the fine specificity of these cross-reactive antibodies. Inhibition assays with a panel of synthetic peptides as competitors showed that cross-reactivity to gp140 was due to antibodies that were specific for the region encompassing HIV-1 gp41 immunodominant epitope, mimicked by peptide P39 (residues 583 to 609), the latter being able to totally inhibit the formation of complexes between radiolabeled HIV-2 gp140 and antibodies elicited by desialylated HIV-1 gp160. In addition, anti-desialylated gp160 antibodies retained on a P39 affinity column still bound HIV-2 gp140. Fine mapping has enabled us to localize the cross-reactive epitope within the N-terminal extremity of the gp41 immunodominant region. Interestingly, this cross-reactive antibody population did not recognize glycosylated or totally deglycosylated simian immunodeficiency virus gp140 despite an amino acid homology with HIV-1 within this region that is comparable to that of HIV-2. This cross-reactivity between HIV-1 and HIV-2 did not correlate with cross-neutralization. These results illustrate the influence of carbohydrate moieties on the specificity of the antibodies produced and clearly indicate that such procedures may be an efficient way to raise specific immune responses that are not type specific. Moreover, this cross-reactivity might explain the double-positive reactivity observed, in some human sera, against both HIV-1 and HIV-2 envelope antigens.  相似文献   

16.
The immunoreactivity, functional activity, and molecular features of a human monoclonal antibody (HMAb), F240, from an HIV-1-infected individual have been studied. Flow cytometric analysis demonstrated that F240 is reactive with cells infected with a broad range of laboratory isolates but not with uninfected cells. Reactivity of F240 is greatly enhanced by preincubation of infected cells with soluble CD4, and to a much lesser extent, with F105, an HMAb reactive with the CD4-binding site of gp120. This enhancement is temperature dependent, with maximum enhancement observed at 37 degrees C, and suggests that the F240 epitope may be more accessible after gp120 has bound to CD4 in vivo. Immunoblot analysis reveals antigen specificity of F240 for gp41 or its precursor gp160. F240 specificity is mapped to the immunodominant region of the gp41 ectodomain by Pepscan analysis. This epitope has been implicated in eliciting nonprotective antibodies that enhance infection in the presence of complement. Consistent with this, F240 failed to neutralize laboratory isolates and enhanced viral infection in a complement-dependent manner. The F240 VH demonstrates extensive somatic mutations compared with the product of its closest homologous germline gene VH3-3.11. Most amino acid substitutions occur in CDR2, characteristic of an antigen-driven response, and in FR3, a phenomenon observed in other anti-HIV-1 envelope HMAbs. Primary structure analysis of the F240 heavy chain revealed strong homology in the CDR domains to an HMAb (3D6) reactive with the same gp41 region, which suggests that these HMAbs could define a potential human antibody clonotype.  相似文献   

17.
The Semliki Forest virus (SFV) system seems to be a useful new approach for generating effective immune responses against HIV-1 in animal models. We evaluated this system by comparing the humoral immune responses raised in mice immunized against the HIV-1 envelope with the SFV system, a DNA vaccine, and a recombinant Env glycoprotein. gp160 ELISA antibody titers (204,800) were highest in the sera from mice immunized with recombinant Semliki Forest virus particles. These sera contained antibodies to the CD4-binding site and recognized linear epitopes on gp120 and gp41 that were also recognized by a pool of sera from HIV1-infected individuals. This demonstrates that the HIV-1 envelope produced in vivo by the SFV system does not fold aberrantly. A low level of neutralizing antibodies against the HIV-1LAI strain was also detected in the serum of one mouse immunized with recombinant SFV particles, suggesting that booster injections should be given to achieve a more effective immune response. SFV recombinant particles induced the strongest humoral responses to the HIV-1 envelope of all the potential HIV env vaccines tested.  相似文献   

18.
PURPOSE: The characterization of recombinant MN gp120/alum vaccine requires the study of the gp120-alum interaction for the successful formulation of an alum-based HIV-1 vaccine. METHODS: Several observations suggest that the gp120-alum interaction is weak, wherein buffer counterions such as phosphate, sulfate, bicarbonate may cause the desorption of gp120 from alum. Comparison of gp120 with other proteins using particle mobility measurements shows that the weak binding of gp120 to alum is not an anomaly. Serum and plasma also cause desorption of gp120 from alum with a half-life of only a few minutes, wherein this half-life may be faster than the in-vivo recruitment of antigen presenting cells to the site of immunization. RESULTS: Immunization of guinea pigs, rabbits and baboons with gp120 formulated in alum or saline demonstrated that alum provides adjuvant activity for gp120, particularly after early immunizations, but the adjuvant effect is attenuated after several boosts. CONCLUSIONS: These observations indicate that both the antigen and the adjuvant require optimization together.  相似文献   

19.
Understanding the antibody response in HIV-1 infection is important to vaccine design. We have studied the antibody response to HIV-1 envelope at the molecular level and determined the characteristics of neutralizing and non-neutralizing antibodies. These antibodies were isolated from phage display libraries prepared from long-term seropositive asymptomatic individuals. The HIV-1 envelope is presented to the immune system in several antigenically distinct configurations: unprocessed gp160, gp120 and gp41 subunits and native envelope, each of which may be important in eliciting an antibody response in HIV-1 infection. The antibodies tested characteristically had poor affinities for native envelope as expressed on the surface of virions or infected cells, but had high affinities against non-native forms of HIV-1 envelope (viral debris). An exceptionally potent neutralizing antibody in contrast, bound native envelope with equivalent or somewhat higher affinity than this. This indicates that the antibody response in HIV-1 infection is principally elicited by viral debris rather than virions, and that these antibodies bind and neutralize viruses sub-optimally. Potential vaccines should be designed to elicit responses against native envelope.  相似文献   

20.
The env gene of SIV and HIV-1 encodes a single glycoprotein gp 160, which is processed to give a noncovalent complex of the soluble glycoprotein gp120 and the transmembrane glycoprotein gp41. The extracellular region (ectodomain), minus the N-terminal fusion peptide, of gp41 from HIV-1 (residues 27-154) and SIV (residues 27-149) have been expressed in Escherichia coli. These insoluble proteins were solubilized and subjected to a simple purification and folding scheme, which results in high yields of soluble protein. Purified proteins have a trimeric subunit composition and high alpha-helical content, consistent with the predicted coil-coil structure. SIV gp41 containing a double cysteine mutation was crystallized. The crystals are suitable for X-ray structure determination and, preliminary analysis, together with additional biochemical evidence, indicates that the gp41 trimer is arranged as a parallel bundle with threefold symmetry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号