首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 187 毫秒
1.
采用木质素与聚醚二元醇、异氰酸酯,制备出木质素基聚氨酯预聚体。对合成木质素基聚氨酯预聚体的温度和时间进行研究,并探讨木质素基聚氨酯预聚体的剪切强度、耐水性能及耐热性能,采用TG(热重分析)对木质素基聚氨酯预聚体进行了分析。结果表明:预聚体合成适宜的反应条件是温度80℃、反应时间为4h;预聚体在浸水7d后,木质素基聚氨酯预聚体(木质素与二元醇羟基物质的量比2∶1)增重为2.35%,在100℃热氧老化15d,断裂伸长率从576%下降到524%,拉伸强度从2.38MPa增至3.15MPa,经TG分析,木质素预聚体(木质素与二元醇羟基物质的量比2∶1)在500℃失重为85%,无木质素预聚体失重为97.9%。  相似文献   

2.
高沸醇木质素合成浇注型聚氨酯弹性体   总被引:1,自引:0,他引:1  
利用高沸醇木质素(HBSLignin)溶解于不同分子量聚乙二醇(PEG)与甲基二异氰酸酯(TDI)合成了浇注型聚氨酯(CPU)弹性体。力学性能测试、耐溶剂性实验表明,聚氨酯中高沸醇木质素用量的增加会提高其硬度、拉伸强度和耐溶剂性能,但拉断伸长率有所降低;采用较低分子量(600)的聚乙二醇溶解高沸醇木质素对聚氨酯的性能有较明显提高,可以制备具有适当的硬度、较高的拉伸强度和拉断伸长率,以及较好的耐溶剂性能的聚氨酯。利用TG、DSC测定了聚氨酯的热性能,结果发现,高沸醇木质素可以提高聚氨酯的热稳定性,其硬段、软段的初始分解温度都有所提高,500℃以下的分解质量百分率随着木质素用量的增大显著减少。  相似文献   

3.
于峥 《化学与粘合》2024,(2):170-174
针对传统足球用普通聚乙二醇基聚氨酯胶粘剂(PU胶)耐老化性能差,成胶时间长,热稳定性能差等问题,提出一种新型改性乙酸木质素PU胶粘剂的制备方法。通过对胶粘剂微观形貌和性能进行表征,探究其用于体育器材的可行性。试验结果表明,在改性温度为120℃,改性乙酸木质素掺量为0.2 g的条件下制备的改性乙酸木质素PU胶粘剂性能最佳,此时胶粘剂的固含量和黏度分别为52.01%和1419 m Pa·s,成胶时间117 min,拉伸强度和杨氏模量分别为91.25 MPa和1 023.7MPa,断裂伸长率为9.87%。经过湿热老化处理后,材料拉伸性能虽然有一定下降,但下降后的材料仍具备较好的拉伸性能。3种胶粘剂的最大分解温度均为292.5℃,其分解速率大小为DLPU-3胶粘剂相似文献   

4.
针对酚醛泡沫塑料脆性大和强度低的缺点,采用双氰胺作为改性剂,对酚醛树脂及其泡沫塑料进行了改性研究,并将改性前后两种泡沫塑料的性能进行了对比。采用傅立叶变换红外光谱对酚醛树脂进行了结构表征,通过粉化率、冲击强度和压缩强度测试分析了改性酚醛泡沫塑料的脆性和力学性能,通过热失重分析了改性酚醛泡沫塑料的热稳定性,并采用极限氧指数仪测定了改性酚醛泡沫塑料的阻燃性能。结果显示,当加入的双氰胺用量为苯酚质量的3%时,改性酚醛泡沫塑料的综合性能最好,其压缩强度达到0.046 MPa,冲击强度达到3.36 k J/m2,粉化率低至2.13%,极限氧指数达到38.5%。相对于纯酚醛泡沫塑料,双氰胺改性酚醛泡沫塑料的力学性能有所提升,脆性明显改善。在热稳定性方面,纯酚醛泡沫塑料在340℃时已明显失重,而3%双氰胺改性酚醛泡沫塑料在370℃后才开始快速失重,热稳定性更好。随着双氰胺用量的增加,改性酚醛泡沫塑料的极限氧指数增大,阻燃性能有所提高。  相似文献   

5.
研究了木质素基可发性酚醛树脂(LPF)及LPF泡沫塑料的结构与性能。结果表明,采用酚化木质素制备的LPF具有比酚醛树脂(PF)更低的游离甲醛(质量分数为0.35%)和更低的游离苯酚(质量分数为0.59%);傅立叶变换红外光谱(FTIR)分析证明了木质素的酚化及参与树脂固化反应;体视显微镜观测结果表明,LPF泡沫塑料具有比PF泡沫塑料更高的闭孔结构;热重分析及氧指数分析结果表明,LPF泡沫塑料具有更好的热稳定性和阻燃性能;压缩强度、导热系数和吸水率测定结果表明,LPF泡沫塑料具有更好的力学性能、保温性能和防水性能。相比于传统的PF泡沫塑料,采用热化学酚化技术制备的LPF泡沫塑料,具有更加优良的力学、保温、防火、防水性能,且更加安全、环保、经济。  相似文献   

6.
聚异氰脲酸硬质泡沫材料是由PM-200(异氰酸酯和二苯甲烷二异氰酸盐的混合物)、异氰脲酸苯酐聚醚酯多元醇(IPPEP)或聚环氧丙烷多元醇在异氰酸酯指数为200的情况下制备的。考察了IPPEP对泡沫材料的热稳定性和阻燃性能的影响,并讨论了n(PO)∶n(PA)对IPPEP基泡沫材料力学性能的影响。结果表明:IPPEP的使用使聚氨酯泡沫材料的玻璃化转变温度提高了45℃,热分解温度由510℃提高到540℃,氧指数提高到23.3%。随着n(PO)∶n(PA)的降低,泡沫材料的拉伸强度和压缩强度呈现先增加后降低的趋势。  相似文献   

7.
通过一步法制备了聚氨酯改性聚异氰脲酸酯(PU-PIR)泡沫,采用材料试验机和热老化实验箱,动态热机械分析仪(DMA),热失重分析(TGA)等考察了PU-PIR的耐热性能。结果表明,PU-PIR的压缩强度随着异氰酸酯指数提高而上升,在80℃测试条件下压缩强度下降幅度随着异氰酸酯指数升高而降低。PU-PIR在受热状态下的尺寸稳定性优于常规聚氨酯。PU-PIR的玻璃化温度较常规聚氨酯高,并且玻璃化温度随着异氰酸酯指数的增加而升高,当异氰酸酯指数为4时,其玻璃化温度达到210℃。PU-PIR在高温区(350~550℃)的热失重率低于常规聚氨酯,而且在此温区内较常规聚氨酯呈现出更明显的热失重速率峰,说明PU-PIR具有比常规聚氨酯更高的热分解温度。  相似文献   

8.
采用双组分醇解剂乙二醇(EG)和丙二醇(PG)对废旧聚氨酯(PU)硬质泡沫塑料进行降解,获得了降解产物低聚物多元醇,并将其与木质素为原料制备出再生聚氨酯(r?PU)硬质泡沫塑料复合材料。利用导热系数测定仪、扫描电子显微镜、热重分析仪、傅里叶变换红外光谱仪等对废旧PU的降解效果和r?PU硬质泡沫复合材料的压缩强度、吸水率、导热系数、微观形貌及热稳定性等进行了分析和表征。结果表明,双组分醇解剂EG和PG质量比(mEGmPG)为2:3时,废旧PU的降解效果最佳;当木质素添加量为6 %(质量分数,下同)时制备r?PU硬质泡沫复合材料的泡沫孔壁较厚且比较均匀,骨架几何构型完整,其压缩强度为185.3 kPa、导热系数为0.021 5 W/(m·K),均能够达到国家标准要求。  相似文献   

9.
以甲苯-2,4-二异氰酸酯(TDI)和分散红-19(DR-19)合成含染料发色团的聚氨酯,进一步和二酐单体均苯四甲酸二酐(PMDA)缩合生成具有光学性能的聚氨酯-酰亚胺(PUI);采用红外光谱(FT—IR)、示差量热扫描(DSC)、热失重分析(TGA)等手段对合成的PUI进行了表征。示差扫描量热和热失重分析结果显示,其玻璃化转变温度(%)为194℃,在5%的热失重温度为217℃,表明具有很好的热稳定性;测定了聚合物的发色团密度,其结果和理论计算值非常接近,表明聚合反应是按计量进行的;采用简单的比色法测定了聚合物材料的三阶非线性光学系数Х^(3)为2.42×10^14esu。  相似文献   

10.
将聚四氢呋喃二醇和富羟基活性蒙脱土(HMMT)进行预混插层处理,然后与甲苯二异氰酸酯(TDI)进行反应,得到层状硅酸盐复合预聚体。随后预聚体与扩链剂(DMTDA)反应制备出聚氨酯橡胶/片层硅酸盐纳米复合材料。采用材料拉伸机、X射线衍射(XRD)、透射电镜 (TEM)、差示扫描量热仪 (DSC)和热失重分析仪 (TGA) 等检测设备对聚醚型聚氨酯脲的结构与性能进行分析。结果表明:当PMMT的质量百分含量在2%时,片层硅酸盐粒子在聚氨酯基体内分散较均匀,形成了以剥离型为主、插层型为辅的复合型结构,聚醚型聚氨酯脲复合材料的拉伸强度比纯PUU提高了21%,断裂伸长率提高了12%,PUU复合材料的玻璃化转变温度(Tg)提高了5.8℃,第一失重区分解温度和最高分解温度高出纯聚氨酯17.33 ℃和13.94 ℃。无机纳米片层硅酸盐粒子的存在,聚氨酯橡胶的强度、韧性和热稳定性均得到改善。  相似文献   

11.
以双酚A型氰酸酯树脂(BADCy)为主要原料,采用模塑成型法制备了氰酸酯泡沫塑料(CEF),并考查了所得泡沫的化学结构、泡孔结构、热性能和力学性能等。结果表明,体系的最佳反应条件为155 ℃/2 h + 200 ℃/2 h,制得的CEF泡孔均匀,为闭孔结构;泡沫塑料的玻璃化转变温度(Tg)为263 ℃,失重5 %的热分解温度为344 ℃; CEF的压缩模量和压缩强度分别与ρ1.043和ρ2.204存在线性关系。  相似文献   

12.
Polyurethane consumption has been increasing in recent years, raising concerns about how to deal with the polymer waste. Post‐consumer rigid polyurethane foams or polyurethane foam scraps (PPU) ground into particles were utilized to strengthen mechanical properties of rigid polyurethane foam (PUF) and phenolic foam (PF). Viscosity of prepolymer with PUF was measured and PPU was well dispersed in prepolymer, as observed by optical microscope. Microstructures and morphologies of the reinforced foam were examined with scanning electron microscope (SEM) while cell diameter and density were measured by Scion Image software. Universal testing machine was employed to optimize compressive properties at various weight ratios of PPU. Both PUF and PF with 5 wt % PPU, respectively, exhibited considerable improvement in mechanical properties especially compressive property. The compressive modulus of PUF with 5 wt % PPU was 12.07 MPa, almost 20% higher than pure PUF while compressive strength of PF with 5 wt % PPU reached 0.48 MPa. The thermal stability of the reinforced foam was tested by thermal gravity analysis (TGA) and the result shows no obvious impact with PPU. The decomposition temperatures of PUF with PPU and PF with PPU were 280°C, because PPU has relatively weak thermal stability. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39734.  相似文献   

13.
The purpose of this study is to develop a protective and thermally intelligent filler by optimizing the preparing conditions and the thermoresponsive property of PU foam. The specimens were polyurethane synthesized by a one step process with 4,4′‐diphenylmethane diisocyanate, polycaprolactone and 1,4‐butanediol. After dissolving the polyurethane in tetrahydrofuran, the polyurethane foam was manufactured by the salt leaching method. The appearance, compressive property, and thermal property of the manufactured foam as well as the shape memory effects were evaluated. In addition, air and water vapor permeabilities and the thermal insulation property were measured to examine the basic properties of the foam. The cell sizes of the completed foam were distributed in the range of 400–1,000 μm. The compressive stress of the foam was low in the initial compressive strain but increased dramatically above a compressive strain of 70%. However, the foam showed a very low capacity for compressive stress compared with an electrospun web or a film manufactured by using the identical shape memory polyurethane. The transition temperature of the foam was 30°C. The shape recovery and shape retention were 98% or higher. The foam, with a porous structure, was found to be generally good in both air and water vapor permeability. In the case of the foam that maintained its compressed shape below the transition temperature, these permeabilities of the foam decreased slightly, but not significantly. Because of the porous structure of the foam, the shape memory effect did not noticeably influence the permeability change with a change in temperature. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

14.
采用木质素和糠醛改性普通甲阶酚醛树脂。运用正交实验法得到木质素糠醛改性甲阶酚醛树脂的最佳反应条件,通过IR,DSC,TG分析和压缩性能测试对产物的热性能和力学性能进行了研究。结果表明,在苯酚100g,木质素40g,甲醛116.54g,糠醛34.28g,反应温度85℃,反应时间3h,体系pH值9的条件下得到的改性甲阶酚醛树脂固含量70%~80%,黏度850~1000mPa.s(25℃),热分解温度为258℃,与普通甲阶酚醛树脂(263℃)相比,耐热性稍差。所制备的改性酚醛塑料的压缩强度为1.07MPa,比普通酚醛塑料(0.73MPa)高,木质素和糠醛的引入提高了泡沫塑料的韧性。  相似文献   

15.
采用端异氰酸酯聚醚预聚物与可发性酚醛树脂制备了新型泡沫体。通过ESI-MS光谱分析和泡沫物理力学性能测试研究了异氰酸酯基团与可发性酚醛树脂比例、异氰酸酯基团和三聚体相对含量、可发性酚醛树脂分子质量对泡沫体制备及性能的影响。结果表明:异氰酸酯基团与酚醛树脂质量比为40/100、三聚体质量分数17.33%、酚醛树脂聚合时间45min时,泡沫体的体积稳定性好,收缩率低;可发性酚醛树脂分子质量增加时,泡沫体的密度从60.16kg/m3增加到63.96kg/m3,基本保持稳定;其弯曲强度为0.2MPa,弯曲应变达到15%以上,远高于纯酚醛泡沫(6%)。在150℃下烘烤2h,泡沫体的质量损失为6%左右,体积变化为-5%左右。泡沫体的热稳定性优于聚氨酯泡沫,同时又有良好的韧性。  相似文献   

16.
本研究利用木质素磺酸钠对聚氨酯泡沫进行改性,提高其阻燃性能。首先,对木质素磺酸钠进行羟甲基化反应,得到羟甲基木质素磺酸钠(HSL),再将HSL部分替代聚醚多元醇,与聚合4,4'-二苯基甲烷二异氰酸酯(MDI)混合,制备羟甲基木质素磺酸钠改性聚氨酯泡沫,再添加膨胀石墨(EG)和次磷酸铝(AHP)进一步提高聚氨酯泡沫的阻燃性。制备出样品后分别进行极限氧指数(LOI)、热重分析(TGA)和扫描电子显微镜(SEM)测试。通过极限氧指数测试分析聚氨酯泡沫样品阻燃性能表明:当羟甲基木质素磺酸钠替代量为60%(以HSL质量占HSL和聚醚多元醇总质量的百分比计)时,所得聚氨酯泡沫材料的LOI指数达到21.6%,最大热降解速率降低了1.53 %/min,残炭量提高了15.04个百分点,泡沫试样中泡沫孔隙数量和面积减少。继续添加混合阻燃剂(膨胀石墨和次磷酸铝质量比为3:1)时,所得聚氨酯泡沫材料的LOI指数能达到26.3%,最大热降解速率降低了1.52 %/min,残炭量提高了23.52个百分点,泡沫试样的泡沫孔隙数量和面积进一步减少。因此,本实验制备出一种具有优异阻燃性能的聚氨酯泡沫,其在建筑领域、交通领域、食品保温领域有广阔的应用前景。  相似文献   

17.
研究了无机钠盐和镁盐对聚氨酯注浆材料固化过程温度的影响,并研究了添加无机盐对材料阻燃性能、表面电阻及抗压强度的影响。结果表明,环境温度为35℃,添加聚醚组分1.2%(质量百分比)无机盐,注浆材料固化最高温度有不同程度下降。其中,添加MgCl2时,注浆材料固化最高温度为102℃,与空白相比,下降了25℃。添加无机盐后,材料阻燃性能略有提高,表面电阻基本不变;抗压强度有所降低。热重分析表明,添加MgCl2时材料的热稳定性无明显改变,而添加其它无机盐,热稳定性有不同程度降低。  相似文献   

18.
研究了咪唑型离子液体阻燃硬质聚氨酯泡沫的可能性,分析了离子液体的种类、用量对硬质聚氨酯泡沫氧指数、水平燃烧速度、热分解性能的影响。结果表明,咪唑型离子液体对硬质聚氨酯泡沫有很好的阻燃效果,与1-丁基-3-甲基咪唑四氟硼酸盐([BMIM]BF4)相比,1-丁基-3-甲基咪唑六氟磷酸盐([BMIM]PF6)的阻燃效果较好,氧指数随着离子液体的添加量增加而增加,当添加[BMIM]PF6质量分数为25%(相对组合聚醚)时,阻燃效果最好,可使氧指数达到24.2,水平燃烧速度降低,具有很好的自熄性。通过热分析可以看出,添加[BMIM]PF6离子液体后可以提高热分解温度,分解残留物增加,放热量大大减小,可有效抑制硬质聚氨酯泡沬的分解,提高其热稳定性。  相似文献   

19.
The compressive-stress strain response of polyurethane foam under uniaxial compressive impact loading has been studied. The development of a uniaxial constitutive model from strain rate controlled compression tests is detailed. Density and temperature functions have been added to the integral power model proposed by Schwaber, Meincke, and Nagy. The model assumes that the effects of density, temperature, strain and strain rate on stress are separable functions. The model correlated well with actual static compression tests and was used successfully to predict the impact response of energy absorbing polyurethane foam under uniaxial compressive loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号