首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A new method for identification and localization of organic molecules in biological samples is described. The method involves making an imprint of a biological sample on a silver (Ag) surface and subsequent analysis of the imprint by imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS). Using this method, detection of unfragmented, Ag cationized molecules at a spatial resolution of <0.5 microm is possible. We have used the method to study the spatial distribution of phosphatidylcholine and cholesterol in blood cells adhering to a glass surface. The TOF-SIMS images show that cholesterol is preferentially located in the plasma membrane, whereas the phosphocholine shows highest concentration in the nuclear membrane. Scanning electron microscopy and fluorescence microscopy images show that the amount of transferred material during the imprinting process can be controlled by varying the imprinting pressure and pretreatment of the cell substrate prior to imprinting.  相似文献   

2.
Investigation of the spatial distribution of lipids in cell membranes can lead to an improved understanding of the role of lipids in biological function and disease. Time-of-flight secondary ion mass spectrometry is capable of molecule-specific imaging of biological molecules across single cells and has demonstrated potential for examining the functional segregation of lipids in cell membranes. In this paper, standard SIMS spectra are analyzed for phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, phosphatidylinositol, cholesterol, and sulfatide. Importantly, each of the lipids result in signature mass spectral peaks that allow them to be identified. These signature peaks are also useful for imaging experiments and are utilized here to simultaneously image lipids on a micrometer scale in picoliter vials. Because the low secondary ion signal achieved for lipids from an atomic primary ion source makes cell-imaging experiments challenging, improving signal with cluster primary ion sources is of interest. Here, we compare the secondary ion yield for seven lipids using atomic (Ga+ or In+) ion sources and a buckminsterfullerene (C60+) primary ion source. A 40-1000-fold improvement in signal is found with C60+ relative to the other two ion sources, indicating great promise for future cellular imaging applications using the C60+ probe.  相似文献   

3.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a well-established bioanalytical method for directly imaging the chemical distribution across single cells. Here we report a protocol for the use of SIMS imaging to comparatively quantify the relative difference in cholesterol level between the plasma membranes of two cells. It should be possible to apply this procedure to the study of other selected lipids. This development enables direct comparison of the chemical effects of different drug treatments and incubation conditions in the plasma membrane at the single-cell level. Relative, quantitative TOF-SIMS imaging has been used here to compare macrophage cells treated to contain elevated levels of cholesterol with respect to control cells. In situ fluorescence microscopy with two different membrane dyes was used to discriminate morphologically similar but differentially treated cells prior to SIMS analysis. SIMS images of fluorescently identified cells reveal that the two populations of cells have distinct outer leaflet membrane compositions with the membranes of the cholesterol-treated macrophages containing more than twice the amount of cholesterol of control macrophages. Relative quantification with SIMS to compare the chemical composition of single cells can provide valuable information about normal biological functions, causative agents of diseases, and possible therapies for diseases.  相似文献   

4.
A hybrid quadrupole orthogonal time-of-flight mass spectrometer optimized for matrix-assisted laser desorption ionization (MALDI) and electrospray ionization has been equipped with a C 60 cluster ion source. This configuration is shown to exhibit a number of characteristics that improve the performance of traditional time-of-flight secondary ion mass spectrometry (TOF-SIMS) experiments for the analysis of complex organic materials and, potentially, for chemical imaging. Specifically, the primary ion beam is operated as a continuous rather than a pulsed beam, resulting in up to 4 orders of magnitude greater ion fluence on the target. The secondary ions are extracted at very low voltage into 8 mTorr of N 2 gas introduced for collisional focusing and cooling purposes. This extraction configuration is shown to yield secondary ions that rapidly lose memory of the mechanism of their birth, yielding tandem mass spectra that are identical for SIMS and MALDI. With implementation of ion trapping, the extraction efficiency is shown to be equivalent to that found in traditional TOF-SIMS machines. Examples are given, for a variety of substrates that illustrate mass resolution of 12,000-15,600 with a mass range for inorganic compounds to m/ z 40,000. Preliminary chemical mapping experiments show that with added sensitivity, imaging in the MS/MS mode of operation is straightforward. In general, the combination of MALDI and SIMS is shown to add capabilities to each technique, providing a robust platform for TOF-SIMS experiments that already exists in a large number of laboratories.  相似文献   

5.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is utilized to examine the mass spectra and fragmentation patterns of seven isomeric monosaccharides. Multivariate statistical analysis techniques, including principal component analysis (PCA), allow discrimination of the extremely similar mass spectra of stereoisomers. Furthermore, PCA identifies those fragment peaks that vary significantly between spectra. Heavy isotope studies confirm that these peaks are indeed sugar fragments, allow identification of the fragments, and provide clues to the fragmentation pathways. Excellent reproducibility is shown by multiple experiments performed over time and on separate samples. This study demonstrates the combined selectivity and discrimination power of TOF-SIMS and PCA and suggests new applications of the technique including differentiation of subtle chemical changes in biological samples that may provide insights into cellular processes, disease progress, and disease diagnosis.  相似文献   

6.
A facile and sensitive mass spectrometric method has been developed for the dereplication of natural products. The method provides information about the molecular formula and substructure of a precursor molecule and its fragments, which are invaluable aids in dereplication of natural products at their early stages of purification and characterization. Collision-induced MS/MS technique is used to fragment a precursor ion into several product ions, and individual product ions are selected and subjected to collision-induced MS/MS/MS analysis. This method enables the identification of the fragmentation pathway of a precursor molecule from its first-generation fragments (MS/MS), through to the nth generation product ions (MSn). It also allows for the identification of the corresponding neutral products released (neutral losses). Elements used in the molecular formula analysis include C, H, N, O, and S, as most natural products are constituted by these five elements. High-resolution mass separation and accurate mass measurements afforded the unique identification of molecular formula of small neutral products. Through sequential add-up of the molecular formulas of the small neutral products, the molecular formula of the precursor ion and its productions were uniquely determined. The molecular formula of the precursor molecule was then reversely used to identify or confirm the molecular formula of the neutral products and that of the productions. The molecular formula of the neutral fragments allowed for the identification of substructures, leading to a rapid and efficient characterization of precursor natural product. The method was applied to paclitaxel (C47H51NO14; 853 amu) to identify its molecular formula and its substructures, and to characterize its potential fragmentation pathways. The method was further validated by correctly identifying the molecular formula of minocycline (C23H27N3O7; 457 amu) and piperacillin (C23H27N5O7S; 517 amu).  相似文献   

7.
We employ imaging time-of-flight secondary ion mass spectrometry to perform high-throughput analysis of solid-phase synthesized combinatorial libraries by acquiring mass spectra from arrays of polymer resin particles. To generalize this procedure to various types of resins and their associated chemical linkers, it is necessary to understand the dynamics associated with the analyte molecules during chemical pretreatment steps. Using stearic acid as a model compound, we examine the influence of three classes of linkers-acid or base labile linkers, a thermally labile linker, and a photochemically cleavable linker- all of which are used to anchor one end of the analyte to the polymer resin. With data obtained using secondary ion mass spectrometry, scanning electron microscopy, and X-ray photoelectron spectroscopy, we conclude that an effective treatment of the resin needs to include cleaving the linker and extracting the unbound analyte to the resin surface. We also demonstrate that the hydrophilicity of the polymeric constituents of a resin particle affects the experiments by changing the location of the analyte molecules during resin treatment. With this information, it is possible to utilize imaging TOF-SIMS to assay a range of material supports with assurance that high-quality spectra can be acquired.  相似文献   

8.
Bioanalytical imaging techniques have been employed to investigate cellular composition at the single-cell and subcellular regimes. Four imaging modes have been performed sequentially in situ to demonstrate the utility of a more integrated approach to imaging cells. The combination of bright-field, scanning ion, and fluorescence microscopy complements TOF-SIMS imaging of native biomolecules. Bright-field microscopy provides a blurred visualization of cells in frozen-hydrated samples, while scanning ion imaging provides a morphological view of freeze-fractured cells after TOF-SIMS analysis is completed. With the use of selective fluorescent labels, fluorescence microscopy allows single mammalian cells to be located in the complex ice matrix of freeze-fractured samples, a task that has not been routine with either bright-field or TOF-SIMS. A fluorescent label, DiI (m/z 834), that does not interfere with the mass spectra of membrane phosphatidylcholine, has been chosen for fluorescence and TOF-SIMS imaging of membrane phospholipids. In this paper, in situ fluorescence microscopy allows the distinction of single cells from ice and other sample debris, previously not possible with bright-field or scanning ion imaging. Once cells are located, TOF-SIMS imaging reveals the localization of membrane lipids, even in the membrane of a single 15-microm rat pheochromocytoma cell. The utility of mapping lipids in the membranes of single cells using this integrated approach will provide more understanding of the functional role of specific lipids in functions of cellular membranes.  相似文献   

9.
Furanone compounds (fimbrolides) have attracted interest as antibacterial compounds for use in human health care, for instance, as an antibacterial coating for medical devices to combat device-centered infections. To ensure effectiveness for extended periods of time, they must be immobilized covalently onto a device surface; in this study, this was done via azide/nitrene chemistry and photochemical coupling. However, the detection and quantification of surface-immobilized small molecules such as furanones presents a considerable analytical challenge, yet is necessary for optimization of coatings and reliable interpretation of biological responses. We have utilized the surface sensitivity and chemical specificity of time-of-flight secondary ion mass spectrometry (TOF-SIMS) to characterize each step of the grafting sequence. On account of the complexity of the data, principal component analysis (PCA) was used to interpret and compare spectra. The results demonstrate the utility of TOF-SIMS with PCA for the detection of the surface-grafted small molecules azidoaniline and a brominated furanone; imaging of the bromine ion peaks also enabled assessment of grafting uniformity. Thus, successful multilayer coating and furanone grafting was observed, and substantial and uniform coverage of furanone molecules on the surface. Even multiple grafting steps involving, in the present case, two low molecular weight compounds can readily be disentangled by PCA. The utility of TOF-SIMS analysis with PCA is particularly well illustrated in the present case by the grafting of the furanone molecules, which did not yield a singular unique peak in the positive ion mass spectra, whereas the collective spectral changes elucidated by PCA provided unambiguous verification of successful grafting of this low molecular weight compound.  相似文献   

10.
Time-of-flight secondary ion mass spectrometry (TOF-SIMS) using buckminsterfullerene (C60) as the primary ion source has the ability to generate chemical images of surfaces with high sensitivities and minimal chemical damage. We studied the application of C60+ to depth profile a biological cell surface in a controlled manner and to subsequently image the revealed subsurfaces, in order to generate three-dimensional molecular images of the biological system. Such an analytical tool not only enables the surface localization of molecular species to be mapped but also enables the biomolecular distribution as a function of depth to be investigated with minimal sample preparation/intervention. Here we demonstrate the technique with a freeze-dried Xenopus laevis oocyte, which is a single cell. A C60+ ion beam was used with computer-controlled analyses and etch cycles. Mass spectra derived from the surface revealed peaks corresponding to cholesterol (m/z 369) and other lipids at m/z 540-570 and 800-1000, in the positive ion mode, and lipid fatty acid side chains (e.g., m/z 255) in the negative ion mode. To our knowledge, this is the first demonstration of the 3D biomolecular imaging within an actual biological system using TOF-SIMS.  相似文献   

11.
Li YL  Su X  Stahl PD  Gross ML 《Analytical chemistry》2007,79(4):1569-1574
Diacylglycerols (DAGs) are important lipid intermediates in cellular trafficking and signaling. Their concentrations are altered in diabetes, cancer, and other disease states. Quantification of DAGs in biological samples may provide critical information to uncover molecular mechanisms leading to various cellular functional disorders. Recent advances in lipidomics using mass spectrometry have greatly accelerated global lipid analysis and quantification. Quantification of DAGs by electrospray mass spectrometry (ESI/MS), however, is challenged by the absence of a permanent charge on the molecule, its low proton affinity and acidity, and its low abundance under normal biological conditions. We describe here the introduction of a quaternary ammonium cation to DAG molecules, using N-chlorobetainyl chloride, to afford a derivatized DAG that gives 2 orders of magnitude higher signal intensities than their underivatized sodium adducts. A linear calibration curve in which peak intensity ratios are plotted versus molar ratios can be achieved by using ESI/MS with dilauroyl glycerol as the internal standard. Employing this new approach to this analyte, we found a 9-fold increase of total DAGs in the livers of obese db/db mice as compared to their heterozygous lean controls. This proven strategy can be used to detect and quantify DAG molecular species from biological samples using ESI/MS after one-step derivatization.  相似文献   

12.
13.
A solid-phase extraction procedure, in a 384-well format, has been developed for methotrexate and its primary metabolite, 7-hydroxymethotrexate, in human urine and plasma. This format has not been utilized previously for solid-phase extraction of drugs from biological fluids. The 384-well plates contained a C-18 stationary phase bonded to silica particles which are incorporated into a glass-fiber membrane. Methotrexate and 7-hydroxymethotrexate have been quantified across the curve range of 1 to 50 microg/mL and 50 to 1000 ng/mL, respectively, in urine and from 5 to 250 ng/mL and 5 to 100 ng/mL, respectively, in plasma. Both analytes are quantified by linear regression using 20-microL sample aliquots. Experiments to evaluate the influence of particle size, elution volume, and injection volume on signal intensity were conducted and are reported, along with the results of experiments examining cross contamination between wells. Recovery was determined to be > or = 95% from urine. Results from a run of 384 samples analyzed over a 14-h period indicate that 384-well SPE can be successfully utilized to increase analytical run sizes and sample throughput for LC/MS/MS determination of small drug molecules in biological samples.  相似文献   

14.
High-mass resolution multi-stage mass spectrometry (MS(n)) fragmentation was tested for differentiation and identification of metabolites, using a series of 121 polyphenolic molecules. The MS(n) fragmentation approach is based on the systematic breakdown of compounds, forming a so-called spectral tree. A chip-based nanoelectrospray ionization source was used combined with an ion-trap, providing reproducible fragmentation, and accurate mass read-out in an Orbitrap Fourier transform (FT) MS enabling rapid assignment of elemental formulas to the molecular ions and all fragment ions derived thereof. The used protocol resulted in reproducible MS(n) fragmentation trees up to MS(5). Obtained results were stable over a 5 month time period, a concentration change of 100-fold, and small changes in normalized collision energy, which is key to metabolite annotation and helpful in structure and substructure elucidation. Differences in the hydroxylation and methoxylation patterns of polyphenolic core structures were found to be reflected by the differential fragmentation of the entire molecule, while variation in a glycosylation site displayed reproducible differences in the relative intensities of fragments originating from the same aglycone fragment ion. Accurate MS(n)-based spectral tree data are therefore a powerful tool to distinguish metabolites with similar elemental formula, thereby assisting compound identification in complex biological samples such as crude plant extracts.  相似文献   

15.
A frozen water matrix, as found in freeze-fractured frozen-hydrated cellular samples, enhances the ionization of phosphatidylcholine lipids with static time-of-flight secondary ion mass spectrometry (TOF-SIMS). Isotopic profiles of the phosphocholine ion from deuterated forms of dipalmitoylphosphatidylcholine (DPPC) have been examined under various sample preparation conditions to show that ionization occurs through protonation from the matrix and is enhanced by the water present in freeze-fractured samples. The ionization of DPPC results in positively charged fragment ions, primarily phosphocholine, with a m/z of 184. Other ions include the M + H ion (m/z 735) and an ion representing the abstraction of the two palmitoyl fatty acid groups (m/z 224). Freeze-fracture techniques have been used to prepare frozen aqueous samples such as liposomes and cells to expose their membranes for static TOF-SIMS imaging. Due to the importance of surface water during SIMS analyses, sources of gas-phase water resulting from freeze-fracture were examined. Under proper fracturing conditions, water vapor, resulting from water in the sample and water condensed onto the outside of the sample, is released into the vacuum but does not condense back onto the surface. Combining the demonstrated enhancement of phosphatidylcholine lipid signal from water with the freeze-fracture preparation techniques described herein demonstrates potential advantages of studying biological samples in a frozen-hydrated state.  相似文献   

16.
Patterning of biomolecules on surfaces is an increasingly important technological goal. Because the fabrication of biomolecule arrays often involves stepwise, spatially resolved derivatization of surfaces, spectroscopic imaging of these arrays is important in their fabrication and optimization. Although imaging time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a powerful method for spatially resolved surface analysis, TOF-SIMS images of micropatterned proteins on organic substrates can be difficult to acquire, because of the lack of high intensity, protein-specific molecular ions that are essential for imaging under static conditions. In contrast, low-mass ions are of suitable intensity for imaging, but can originate from different chemical species on the surface. A potential solution to this problem is to utilize stable isotope labeled proteins, an approach that has heretofore not been explored in TOF-SIMS imaging of micropatterned proteins and peptides. To investigate the feasibility of stable isotope enhanced TOF-SIMS imaging of proteins, we synthesized 15N-labeled streptavidin by labeling of the protein during expression from a recombinant gene. The spatial distribution of streptavidin bound to biotin micropatterns, fabricated on a polymer and on a self-assembled monolayer on gold, was imaged by TOF-SIMS. Imaging of high-intensity, low-m/z secondary ions (e.g., C15N-) unique to streptavidin enabled unambiguous spatial mapping of the micropatterned protein with a lateral resolution of a few micrometers. TOF-SIMS imaging of micropatterned 15N-labeled streptavidin also illustrated the exquisite sensitivity of TOF-SIMS to low fractional coverage of protein (5 A effective thickness) in the background regions of the protein micropattern.  相似文献   

17.
J Zhao  J Zhu  D M Lubman 《Analytical chemistry》1992,64(13):1426-1433
An atmospheric pressure DC glow discharge in helium has been used as an ionization source for organic samples introduced by liquid injection into atmospheric pressure ionization mass spectrometry (API/MS). The glow source operates typically in the range up to 1 mA of current at less than 1 kV, although the source can be operated up to a discharge current of 10 mA. Even at the high current used in this work, the protonated molecule, MH+, is observed with little or no fragmentation for many of the samples studied. The detection limits achieved for API glow discharge detection are typically in the low femtomole region for small organic molecules including small biological neurotransmitters, drugs, pesticides, phenylthiohydantoin-substituted amino acids, and explosives. A detection limit of approximately 2 pg has been achieved for tyramine with linear quantitation over at least 3 orders of magnitude. The sensitivity in these experiments has been further improved by optimization of the skimmer-interface system and the liquid injection/nebulization design.  相似文献   

18.
Zhang H  Cha S  Yeung ES 《Analytical chemistry》2007,79(17):6575-6584
Due to a high background in the low-mass region, conventional MALDI is not as useful for detecting small molecules (molecular masses <500 Da) as it is for large ones. Also, spatial inhomogeneity that is inherent to crystalline matrixes can degrade resolution in imaging mass spectrometry (IMS). In this study, colloidal graphite was investigated as an alternative matrix for laser desorption/ionization (GALDI) in IMS. We demonstrate its advantages over conventional MALDI in the detection of small molecules such as organic acids, flavonoids, and oligosaccharides. GALDI provides good sensitivity for such small molecules. The detection limit of fatty acids and flavonoids in the negative-ion mode are in the low-femtomole range. Molecules were detected directly and identified by comparing the MS and MS/MS spectra with those of standards. Various fruits were chosen to evaluate the practical utility of GALDI since many types of small molecules are present in them. Distribution of these small molecules in the fruit was investigated by using IMS and IMS/MS.  相似文献   

19.
Weng LT  Wong PC  Ho K  Wang S  Zeng Z  Yang S 《Analytical chemistry》2000,72(20):4908-4913
A series of sulfonated poly(N-vinylcarbazole) (PVK) samples have been systematically studied by time-of-flight secondary ion mass spectrometry (TOF-SIMS) and X-ray photoelectron spectroscopy (XPS). Negative TOF-SIMS results provided unambiguous evidence that sulfonate groups are chemically attached to the carbazole moiety of PVK. The positive SIMS spectrum of PVK was, however, little affected by the sulfonation reaction. The degree of sulfonation was quantitatively determined by XPS. Therefore, the combination of TOF-SIMS and XPS is useful to follow the sulfonation reaction, both qualitatively and quantitatively. The SIMS intensities of some characteristic fragments are linearly related to the degree of sulfonation, suggesting that quantitative analysis is possible from TOF-SIMS data.  相似文献   

20.
The spatial distributions of various specific lipids in freeze-dried mouse brain sections were monitored using time-of-flight secondary ion mass spectrometry (TOF-SIMS). Mouse brain sections were prepared by cryosectioning, rinsing in 0.15 M NH3HCOO, and freeze-drying, after which the samples were analyzed directly by TOF-SIMS, using Au3+ ions as primary ions. Positive and negative TOF-SIMS spectra of the tissue surface contained peaks from quasimolecular ions of a variety of specific lipids, including cholesterol, sulfatides, phosphatidylinositols, and phosphatidylcholines. Images showing the spatial signal intensity distributions of specific ions were recorded across analysis areas ranging from 100 x 100 microm(2) to 9 x 9 mm(2). The results demonstrate a highly complementary localization of cholesterol and phosphatidylcholine over dimensions from millimeter to micrometer range. Characteristic spatial distributions of several other lipids, including sulfatides and phosphatidylinositols, were observed. Principal component analysis was used to localize regions of the sample surface that show common spectral features. Spectra from different such regions showed large variations in lipid ion signals, indicating large variations in the lipid composition in different regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号