首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
镎的主要价态为四、五、六价,三种价态的镎可共存,且可在一定条件下互相转化。不同价态镎的萃取行为不尽相同。随铀钚一同进入1B槽中的镎主要为具有一定萃取能力的Np(Ⅳ)和萃取能力较高的Np(Ⅵ)。在1B槽还原性气氛下,Np(Ⅵ)将被反萃液中的还原剂还原为Np(Ⅴ)甚至Np(Ⅳ),而Np(Ⅴ)的萃取能力很弱,基本上不被萃取,所以,Np(Ⅳ)的萃取行为便成了1B槽铀镎分离的关键。基于以上分析,在1B槽铀镎分离串级实验中,初始镎以Np(Ⅳ)形式加入。  相似文献   

2.
在Purex流程中,镎可以Np^4+、NpO2^+、NpO2^2+价态同时存在,但Np(Ⅳ)和Np(Ⅵ)能被TBP萃取,而Np(Ⅴ)则在TBP中的分配比很低。不能被TBP萃取,因此,控制镎的价态是分离提取镎的重要环节。可利用镎不同价态之间电位的差异,采用电化学方法控制镎的价态。  相似文献   

3.
为了解镎在萃取过程中的化学行为,采用单级萃取研究了硝酸溶液中Np(Ⅴ)氧化为Np(Ⅵ)的行为和此过程中TBP萃取Np(Ⅵ)的性能。实验结果表明,提高硝酸浓度有利于Np(Ⅴ)的氧化,提高了萃取体系对Np(Ⅵ)的萃取;提高亚硝酸浓度加快了Np(Ⅵ)和Np(Ⅴ)之间氧化还原反应的进行,但是会降低平衡后萃取系统中Np(Ⅵ)的比例;升高温度可以提高Np(Ⅴ)转化为Np(Ⅵ)的速率。通过模拟1AF料液的混合澄清槽台架实验表明,自1AX中引入0.01 mol/L HNO2,同时将萃取温度升高到45℃,在1AF硝酸浓度为3.5mol/L的条件下,1A槽镎的萃取率可以达到80%。  相似文献   

4.
在制备并稳定Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的基础上,研究了它们在稀TBP/煤油与水相间的分配。考察了25℃下5%TBP/煤油萃取时硝酸浓度、硝酸铝浓度、六价铀浓度对3种价态镎萃取分配的影响,并考察了TBP浓度对它们的萃取影响。25℃下,Np(Ⅳ,Ⅴ,Ⅵ)的萃取反应方程及表观平衡常数分别为Np  相似文献   

5.
采用磷酸三丁酯(TBP)溶剂萃取法对从辐照镎靶溶解液中提取分离钚的可行性进行了研究。从料液制备、流程设计两个方面研究了Pu(Ⅳ)-Np(Ⅳ)组合作为萃取价态组合的可能性。研究了1,1-二甲基肼(UDMH)还原-亚硝酸钠氧化两步法将镎、钚控制在Pu(Ⅳ)-Np(Ⅳ)的方法。结果表明,99.9%以上Pu(Ⅳ)-99.5%以上Np(Ⅳ)在4 h内能够保持稳定。基于此,设计了从辐照镎靶溶解液中提取分离钚的萃取流程,并用串级实验进行了验证:1A中镎的回收率为99.5%;1B中镎的反萃率为0.8%,钚的反萃率为99.9%;1C中镎的反萃率为99.5%。结果表明,采用Np(Ⅳ)-Pu(Ⅳ)的价态组合进料,基本可实现镎钚的分离,但料液中Np(Ⅳ)-Pu(Ⅳ)价态的长时间稳定性及TBP对Np(Ⅳ)萃取能力弱等问题将影响该工艺的实际应用。  相似文献   

6.
本文研究了用磷酸三(2—乙基己基)酯(以下简称为TIOP)作固定相、硝酸等为流动相的萃取色层法在分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)中的应用。利用Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)在TIOP—硅胶柱上分配系数的差异使不同价态的镎得到分离。Np(Ⅴ)不被TIOP吸附,Np(Ⅳ)、Np(Ⅵ)分别用HNO_3+HF、HNO_3+HF+Fe(NH_2SO_3)_2洗脱,从而达到定量分离。文中并对光的影响进行了讨论。最后简单叙述了用TIOP—萃淋树脂来分离Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的实验。  相似文献   

7.
对HNO_3介质中的Np(Ⅴ)-Np(Ⅵ)电极行为进行了研究。实验表明,电解过程可逆,Np(Ⅴ)的还原有很高的超电位。在双区单级电解槽中,阴极电位700mV(S.C.E.),电解还原10分钟,可使Np(Ⅵ)定量还原成Np(Ⅴ)。在1.50mol/L HNO_3介质中,电解还原Np(Ⅵ)的半反应时间约1.5分钟。可以预见,在混合澄清槽中的镎将主要处于四价状态。介绍了研制阳阴极共区电解还原混合澄清槽的目的、设计、调试、铀酸冷运转的情况。并利用该槽进行了铀、钚、镎共存的运行试验,着重了解镎在铀、钚分离过程中的行为。实验证明,钚收率99.90—99.99%;钚中去铀分离系数3900~33000;铀、钚、酸物料衡算良好;镎在槽中的积累和内循环严重;镎在槽中主要以四价形态存在;在1B槽铀钚分离条件下,从单一产品液流(IBU或IBP)中定量回收镎是不太可能的。  相似文献   

8.
研究了硝酸溶液中NP(Ⅳ),Np(Ⅴ)和Np(Ⅵ)在硅胶上的吸附行为。实验结果表明,三种价态的镎在硅胶吸附2-4h达到平衡;镎在硅胶上的吸附分配系数随温度的升高而增加;氧化还原剂初始浓度对镎在硅胶上的吸附影响不大;三种价态的镎的吸附规律符合Langmuir吸附等温线,镎在硅胶上的吸附属于单分子层吸附。从吸附热的数据可判断三种价态的镎在硅胶上的吸附属于化学吸附,为吸热过程。  相似文献   

9.
本文对HNO_3介质中的Np(Ⅴ)—Np(Ⅵ)电极行为进行了研究。实验表明,电极过程可逆,Np(Ⅴ)的还原有很高的超电位。在双区单级电解槽中,阴极电位700mV(S.C.E.),电解还原10分钟,可使Np(Ⅵ)定量还原成Np(Ⅴ)。在1.50 M HNO_2介质中,电解还原Np(Ⅵ)的平反应时间约1.5分钟。可以预见,在混合澄清槽中的镎将处于四、五价状态。  相似文献   

10.
使用现有的恒电位仪、数字积分仪和数字电压表进行了镎浓度和价态的控制电位库仑滴定。利用部分电解氧化还原法测定了Ce(Ⅳ)/Ce(Ⅲ)和Np(Ⅵ)/Np(Ⅴ)电对的克式量电位,在1.00N H_2SO_4介质中,其数值分别为1.196和0.841伏。当镎的取样总量约为1.3毫克时,使用控制电位库仑法测定镎浓度得到了0.6%的精密度和较高的准确度(相对作为基准方法的恒电流库仑法有0.9%的偏差)。本方法测定镎的价态与反相分配色层法符合得很好。实验结果表明,大量铀存在时(铀:镎约为75)对镎的电解速度和镎价态测定没有显著影响。  相似文献   

11.
从Np(Ⅴ,Ⅵ)与二甲基羟胺(DMHAN)、单甲基肼(MMH)反应动力学及有机相中Np(Ⅵ)的反萃动力学两方面实验考察了APOR流程1B槽中镎的走向行为。结果表明:DMHAN还原Np(Ⅵ)的速率很快,动力学方程为-dc(Np(Ⅵ))/dt=kc(Np(Ⅵ))c(DMHAN)/c0.6(H+),25℃时,反应速率常数k=289.8(mol·L-1)-0.4·min-1;进一步还原Np(Ⅴ)的速率则很慢,其中,DMHAN还原Np(Ⅴ)的动力学方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c(DMHAN)c(H+),25℃时,k=0.0236(mol·L-1)-2·min-1;MMH还原Np(Ⅴ)的动力学方程为-dc(Np(Ⅴ))/dt=kc(Np(Ⅴ))c0.36(MMH)c(H+),25℃时,k=0.0022(mol·L-1)-1.36·min-1。所以,1B槽中Np主要以Np(Ⅴ)形式存在。在扩散控制模式下,DMHAN和MMH对Np(Ⅵ)的反萃动力学方程分别为:dca(Np(Ⅵ))/dt=k(V/S)co0.,05(Np(Ⅵ)).co-0.14(TBP)ca-0.32(NO3-),25℃时,k=2.29×10-4(mol·L-1)0.96·cm-1·min-1;dca(Np(Ⅵ))/dt=k(V/S)co0.,063(Np(Ⅵ))co-0.27(TBP)ca-0.34(NO3-),25℃时,k=6.24×10-4(mol·L-1)0.98·cm-1·min-1。可见,DMHAN-MMH存在下,Np可被快速反萃入水相。基于以上的动力学参数以及工艺过程参数,可计算出1B槽中95%的Np进入水相。  相似文献   

12.
为了提高Purex流程铀纯化循环2D槽中镎的净化效果,研究了Np(Ⅳ)氧化条件,考察了用硝酸肼对钌进行预处理的过程中,预处理试剂浓度、酸度、温度、时间等不同预处理条件对Np(Ⅴ)稳定性的影响.结果表明,在0.2 mol/L酸度、85℃下保温2h,可以将料液中97%的Np(Ⅳ)氧化为Np(Ⅴ)或Np(Ⅵ).预处理时离子强...  相似文献   

13.
在HNO3-U(Ⅳ)-N2H4-Tc(Ⅶ)-Np(Ⅴ)体系中,Np(Ⅴ)迅速还原为Np(Ⅳ)。对比研究表明,Tc是该体系中Np(Ⅴ)迅速还原的主要原因。该体系中的主要反应是U(Ⅳ)将Tc(Ⅶ)还原为Tc(Ⅳ),进而Tc(Ⅳ)将Np(Ⅴ)还原为Np(Ⅳ)。本文通过串级和台架实验研究了该体系中锝对镎走向的影响。结果表明,Np(Ⅴ)的还原速度随HNO3浓度、初始Tc浓度的增大和温度的升高而加快。在模拟Purex流程铀钚分离工艺的条件下,试管串级和微型混合澄清槽台架实验结果表明,提高1AP料液中Tc(Ⅶ)的浓度、升高反应温度,Np进入1BU中的百分含量增加。  相似文献   

14.
本文研究了含镎的硝酸-硝酸铀酰溶液在~(60)Coγ辐照场中镎价态变化的规律。观察了硝酸浓度、硝酸铀酰浓度及辐照剂量对镎价态变化的影响。结果表明:起始价态以镎(Ⅴ)为主的溶液经辐照后发生了辐射氧化-还原反应而生成镎(Ⅳ)和镎(Ⅵ),其生成量的多寡取决于溶液成份及辐照条件,起始价态以镎(Ⅵ)为主的溶液在辐照场中镎被还原;起始价态以镎(Ⅳ)为主的溶液在辐照场中镎被氧化。本文也对~(60)Coγ辐照场中镎价态变化的反应机理进行了一些讨论。  相似文献   

15.
为了解正丁醛在还原反萃分离铀、钚、镎过程中的作用,以正丁醛为还原剂,进行了硝酸水溶液反萃含U(Ⅵ)、Np(Ⅵ)或U(Ⅵ)、Np(Ⅵ)、Pu(Ⅳ)的TBP/煤油中Np的实验研究,测定了串级实验时Np在各萃取器中的分布,讨论了正丁醛、镎、铀、硝酸浓度、相比等对镎在萃取器中分布的影响.单级实验结果表明,正丁醛的加入和延长正丁醛与镎的相互作用时间,有利于从有机相中反萃镎;正丁醛的加入对铀、钚分配比的影响不大;但铀浓度增加会增加镎的反萃.串级实验结果表明,镎在1BP中的比例小于10%;第二级加入正丁醛时,正丁醛和镎在各级的分布较合理,能兼顾镎的去污与反萃.为了减少铀的损失,需要采用较高的硝酸浓度;在1BW中出现少量白色沉淀.  相似文献   

16.
次锕系核素(主要为Am、Cm和Np)是放射性废物中长期放射性毒性的最大贡献体,将这些次锕系核素从废物中去除后可以将必要的储存时间由原来的大于106年减少到不到103年。近年来,二甘醇二酰胺(两个酰胺基团之间通过醚基连接)作为三齿试剂与金属离子配位得到了广泛的研究。在这类试剂中,N,N,N′,N′-四辛基-3-氧戊二酰胺(TODGA)被认为从高放废液(HLLW)中分离三价锕系和镧系具有较大的应用前景。本工作以TODGA和N,N-二己基辛酰胺(DHOA)为萃取剂,研究了以正十二烷为稀释剂,二者对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取行为,主要考察了萃取剂浓度、HNO3浓度和NaNO3浓度的影响。结果表明:TODGA和DHOA对Np(Ⅳ)、Np(Ⅴ)和Np(Ⅵ)的萃取分配比大小顺序均为:D(Np(Ⅳ))>D(Np(Ⅵ))>D(Np(Ⅴ)),并且均对Np(Ⅴ)的萃取能力较小;TODGA/正十二烷体系中加入DHOA时,对Np(Ⅳ,Ⅴ,Ⅵ)萃取具有一定的反协同效应;TODGA萃取Np(Ⅳ,Ⅴ,Ⅵ)的方程式分别为:Np4+(aq)+4NO-3(aq)+3TODGA(org→)Np(NO3)4.3TODGA(org)NpO+2(aq)+NO-3(aq)+TODGA(org→)NpO2(NO3).TODGA(org)NpO2+2(aq)+2NO-3(aq)+2TODGA(org→)NpO2(NO3)2.2TODGA(org)  相似文献   

17.
237Np半衰期较长,具有较高的生物毒性,使其成为高放废液非α化过程中重点关注的核素之一。本工作采用新型的N,N′-二甲基-N,N′-二辛基-3-氧杂-戊二酰胺(DMDODGA)为萃取剂,研究了萃取剂浓度、水相初始硝酸浓度和温度等因素对DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的影响。结果表明:随着DMDODGA浓度和水相初始硝酸浓度的增加,Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的分配比均增大。萃取剂浓度小于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶2型萃合物;萃取剂浓度大于0.005 mol/L时,DMDODGA与Np(Ⅳ)生成1∶3型萃合物。萃取剂浓度在0.1~1.0 mol/L范围内,DMDODGA与Np(Ⅴ)、Np(Ⅵ)均生成1∶2型萃合物。DMDODGA萃取Np(Ⅳ)、Np(Ⅴ)、Np(Ⅵ)的ΔH分别为-59.55、-22.02、-31.40 kJ/mol,3个反应均为放热反应,降低温度有利于反应的正向进行。  相似文献   

18.
镎的提取和分离是后处理领域重点关注的研究课题之一。甲基肼作为一种有机无盐试剂,其还原Np(Ⅵ)的速率快于还原Pu(Ⅳ)的速率,理论上可以利用其反应速率上的差异来实现镎与钚的分离。为了探索甲基肼还原反萃分离镎、钚的可行性,本文采用单级萃取池研究了甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的过程。通过考察还原剂浓度、硝酸浓度以及反应温度和搅拌速率等条件对甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)过程的影响,确定了Np(Ⅵ)和Pu(Ⅳ)反萃动力学方程和表观活化能。通过所得的动力学方程得出甲基肼还原反萃Np(Ⅵ)和Pu(Ⅳ)的半反应时间,并对Np(Ⅵ)和Pu(Ⅳ)分离过程的工艺进行了初步探索。  相似文献   

19.
建立了痕量Pu(Ⅳ)、Pu(Ⅴ)、Pu(Ⅵ)溶液的制备方法,并跟踪了各价态钚溶液的稳定性。采用TTA选择性萃取Pu(Ⅳ)、HDEHP萃取Pu(Ⅳ+Ⅵ)的方法分析了溶液中钚价态的分布。结果表明,将浓度为10-11 mol/L量级的钚溶液在1mol/L HNO3体系中反复蒸干可制得Pu(Ⅳ)溶液;Pu(Ⅳ)在0.5~1mol/L HNO3-0.1mmol/L KMnO4溶液体系中反应24h,可获得Pu(Ⅵ)溶液;Pu(Ⅵ)避光保存5d后,可得到Pu(Ⅴ)溶液,各单一价态钚溶液的纯度均大于90%。在pH=3.0、0.01mol/L NaCl体系中,各价态均不能稳定存在,因此,所需单一价态钚溶液应新鲜制备。  相似文献   

20.
通过分光光度法和液闪计数法研究了Np(Ⅴ)与U(Ⅵ)间的阳阳离子络合作用对Np(Ⅴ)在30%TBP-煤油有机相中的萃取分配行为的影响。结果表明:Np(Ⅴ)-U(Ⅵ)阳阳离子络合物可被萃入TBP有机相中,其萃取分配系数较Np(Ⅴ)提高了数倍。随着U浓度在0.12~0.60 mol/L范围内升高,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数不断增加,当U浓度达到0.72 mol/L时,由于有机相铀饱和度原因,Np(Ⅴ)-U(Ⅵ)阳阳离子络合物萃取分配系数下降。在室温下,水相酸度为3 mol/L、铀浓度为0.60 mol/L、相比(o/a)为2∶1、两相接触时间为1 min时,Np(Ⅴ)的总萃取分配系数约为0.1,萃入有机相中的Np约占Np总量的9%。提高酸度有利于Np(Ⅴ)-U(Ⅵ)阳阳离子络合物的萃取,接触时间在1~8min范围内对萃取无影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号