首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 453 毫秒
1.
设计了一种十字架型电磁超材料吸波体,采用CST studio suite 2009 频域求解器提取S 参数进行仿真研究,并计算了其吸波率,在24.65 THz 和35.25 THz 得到两个吸收峰,吸收率分别为0.83 和0.997。改变材料结构尺寸,在7.3 THz 达到完美吸收,吸收率接近于1。将THz 波段的超材料吸波体结构尺寸放大1000 倍,在GHz 波段同样可以达到完美吸收,说明超材料吸波体可通过对结构尺寸调节改变吸收波段。另外研究了这种吸波体的吸收机理,发现吸收主要在第一层的十字架金属单元层,可用于Bolometer 探测器的设计。  相似文献   

2.
提出了一种基于二氧化钒-狄拉克半金属混合超材料的单/双波段可切换太赫兹吸波器设计。利用二氧化钒的可逆相变特性来实现单/双波段功能之间的切换,当二氧化钒处于绝缘态时,通过改变狄拉克半金属的费米能级能量,可实现吸收峰值大小和位置的调控。数值仿真表明:当二氧化钒处于绝缘态且狄拉克半金属的费米能级能量设定为160 meV时,吸波器可以在0.97 THz和3.152 THz处出现两个吸收峰,吸收率分别为99.3%和99.7%,均超过了99%,说明在这两个谐振频率点处实现了几乎完美的吸收。而当二氧化钒变为金属态且狄拉克半金属的费米能级能量为160 meV时,吸波器在4.246 THz处出现一个吸收峰,吸收峰值超过98%。实际上,由于狄拉克半金属的存在,吸收率会受到费米能级能量的影响,仿真结果发现:当VO2处于绝缘态时,狄拉克半金属费米能级能量对吸收峰值和谐振频率点有较大的影响;然而,当VO2处于金属态时,狄拉克半金属的费米能级能量几乎不会改变吸收峰值和谐振频率。为了验证吸波器的吸波机理,引入阻抗匹配理论对吸波器进行分析。所提出的可切换超材料吸波器可以广泛...  相似文献   

3.
设计了一款可用于检测材料折射率及厚度的双开口环型太赫兹超材料传感器,其结构由双开口方环与圆环嵌套的超材料结构和聚酰亚胺衬底两部分构成.当太赫兹波垂直入射超材料表面时,该传感器结构在0.8~1.8 THz范围内形成三个高Q值谐振峰(中心频率分别为f1,f2和f3).通过探讨超材料结构表面电流分布与三个谐振峰形成的关系,观察到超材料结构对入射太赫兹波的不同响应特性导致产生不同的表面电流分布.此外,还对该传感器在折射率传感和厚度传感方面的应用进行了探究.在待测物厚度一定的情况下,该传感器在谐振频率f1,f2和f3处的传感灵敏度分别可达170,103和119 GHz/RIU,均具有优越的传感特性,可利用其多谐振峰进行高灵敏度折射率传感.这种高灵敏度的多谐振峰折射率传感器可以检测到待测分析物的微小变化,在生物化学检测领域具有广阔的应用前景.  相似文献   

4.
提出了由“田”字型狄拉克半金属(BDS)谐振器和钛酸锶(STO)组成的双调谐“完美”超材料吸波体并进行数值仿真。结果表明:当BDS费米能量为40 meV、STO温度为400 K时,吸波体在2.613 1 THz处吸收率达到了99%。同时,当BDS费米能量和STO温度改变时,可实现吸波体吸收频率和吸收率大小的动态双调谐。此外,分别利用了耦合模理论(CMT)和等效电路模型(ECM)从理论上分析了吸波体的性能。最后,进一步讨论了模型各参数改变时,吸波体吸收光谱的变化规律。这为双调谐滤波器、吸波体的设计提供了理论依据。  相似文献   

5.
基于超材料的电磁谐振原理设计了一种三波段的超材料吸波体.该吸波体由电环谐振器和金属线组成.仿真结果显示,该谐振器有3个明显的吸收峰.在8.06GHz时,吸收率达到了94.02%;在4.76GHz时,吸收率为79.02%;而12.3GHz时,吸收率则是73%.在此基础上,利用一种结合了连续蚁群算法和差分进化算法的新型优化算法对该结构进行优化,使得该结构在4.9GHz和11.85GHz附近吸收率达到95%以上,可以灵活地实现特定频率处的高吸收率.  相似文献   

6.
基于二维材料石墨烯,设计了一款宽频带可调谐超材料太赫兹吸波体。该吸波体由三层结构组成,顶层为石墨烯超材料,中间层为二氧化硅,底层为金属薄膜。仿真结果表明,当石墨烯的费米能级为0.7 eV时,该吸波体在1.11~2.61 THz频率范围内吸收率超过90%,相对吸收带宽为80.6%。当石墨烯的费米能级从0 eV增大到0.7 eV时,该吸波体器件的峰值吸收率可以从20.32%增大到98.56%。此外,该吸波体器件还具有极化不敏感和广角吸收的特性。因此,它在太赫兹波段的热成像、热探测、隐身技术等领域具有潜在的应用价值。  相似文献   

7.
超材料吸波体的性能受电磁波入射角度的影响,具有宽角度稳定性的吸波体一直是吸波体设计的难点之一。传统设计方式依赖于人工设计和优化,存在设计困难且周期长的缺陷。针对设计目标的特点,基于改进粒子群优化算法设计了宽角度高吸收率超材料吸波体。通过添加动态权值和高斯误差解决二进制粒子群优化算法后期局部搜索能力弱的问题,用改进的二进制粒子群优化算法优化吸波体表层0、1编码的离散金属块结构实现高吸收率和宽入射角吸收特性。仿真结果表明,设计的超材料吸波体在9.4~13.3 GHz频段的吸收率大于90%,在11.6~12.6 GHz频段内可实现完美吸收(吸收率大于99%),横电、横磁极化波60°斜入射情况下超材料吸波体在带宽内的吸收率大于80%。该设计方法有效弥补了传统设计方法的缺陷,展现出按需设计和设计过程无需人为干预的独特优势,在相关领域具有广泛的应用前景。  相似文献   

8.
《微纳电子技术》2020,(1):13-21
基于温度敏感材料钛酸锶(SrTiO3)提出了两款频率可调谐太赫兹(THz)超材料(MM)吸波器。由于SrTiO3材料的复值介电常数与外界温度相关,因此基于SrTiO3材料的太赫兹超材料吸波器的谐振频率可随外界温度变化。一款是基于十字金属谐振结构和SrTiO3介质层实现的,在200~400 K的温度范围内,其谐振频率可在1.62~2.44 THz的宽频带范围内实现主动调谐。另一款超材料吸波器通过在十字环金属谐振结构内填充SrTiO3材料来实现,而中间介电层仍然采用常见的聚二甲基硅氧烷(PDMS)材料。当外部温度从200 K变为400 K时,谐振频率从1.11 THz移至1.58 THz,频率偏移达到了470 GHz,实现了频率可调的太赫兹超材料吸波器。可调谐超材料吸波器的实现可进一步扩展超材料吸波器的应用领域,从而更好地适应如太赫兹成像、太赫兹检测、传感和隐身等各种应用。  相似文献   

9.
设计了一种基于不同半径的二氧化钒(VO2)圆环加载于介质层上的宽带可调超材料吸波器,利用VO2随温度变化的相变特性,实现了外部温度对吸收曲线的动态调节.通过仿真计算表明,该吸波器在外部温度为350K时在8.09~11.23THz带宽范围内吸收率可达90%以上,表现出高吸收特性;而外部温度为300K时在相同频段内吸收率始终低于20%,从而实现了对电磁波吸收的可调功能.进一步对吸波器的等效阻抗和电场分布进行分析讨论,阐明VO2对吸收性能的调节机制.此外,文章讨论了结构参数、偏振角以及入射角对吸收的影响.其结果表明,合理选择结构参数可实现吸收性能与偏振角、入射角的无关性.本文的结论对于设计其它类型的超宽带可调吸波器具有重要的指导意义.  相似文献   

10.
提出了基于狄拉克半金属(BDS)和二氧化钒(VO2)的三频带(triple-band)双调谐吸波体,通过时域有限差分法和等效电路模型(ECM)分析了吸波体的电磁特性。研究表明:当VO2呈现出纯金属态时,吸波体会出现三个明显的吸收峰,平均吸收率为98.64%。同时,通过改变BDS费米能量和VO2电导率可以动态调谐吸波体吸收峰处的谐振频率和吸收率。最后,分别讨论了吸波体吸波特性随BDS层、VO2层和中间介质层厚度的变化规律。这为多带双调谐滤波器、吸波体的设计提供了理论依据。  相似文献   

11.
孟宪睿  张铭  席宇鹏  王如志  王长昊  王波 《红外与激光工程》2022,51(6):20210648-1-20210648-7
提出了一种性能可调的宽带、极化与入射角不敏感的超材料太赫兹吸收器,该吸收器自上而下分为四层结构,分别是:硅半椭球/半球体复合结构、连续石墨烯层、PDMS介质层和金属背板。通过在TE波垂直入射条件下仿真,在已知结果基础上,对不同石墨烯化学势和不同结构条件下的电场结果分析表明,在硅半椭球/半球体亚波长复合结构所形成的连续、多模法布里-珀罗共振,以及由石墨烯所激发的多个离散的等离子体共振的协同作用下,其吸收光谱得到平滑和扩展,使该结构可实现吸收率宽范围可调,以及接近100%吸收率的宽频带吸收特性。特别的,当石墨烯化学势分别为0.2与0.9 eV时,其分别可获得约5.7 THz与7 THz的宽带太赫兹波吸收(吸收率超过90%),且其最大吸收率接近完美吸收(约99.8%)。此外,该结构还具有360°极化不敏感和高于60°的入射角不敏感等优异特性,在以上角度范围内,吸收器吸收率仍可保持到90%以上。在太赫兹波探测、光谱成像以及隐身技术等方面具有潜在的应用前景。  相似文献   

12.
提出并研究了一种偏振选择可调谐双带太赫兹吸收器。吸收器由顶层方形劈裂石墨烯环、中间SiO2介质层以及底层金反射层组成。基于时域有限差分法的仿真结果显示,该吸收器在不同偏振光入射下均可以实现双带高效率吸收。x偏振光时在7.86和12.63THz处的吸收率分别为97.9%和91.2%;y偏振光时在6.30和10.52THz处的吸收率分别为94.1%和93.2%。通过改变石墨烯费米能级,可以对两个偏振的双带吸收峰波长进行调谐。此外,研究了介质层厚度和石墨烯劈裂环的物理参数对共振吸收峰的影响。因为在两个偏振状态下都能产生双带高吸收,所以此吸收器在太赫兹偏振成像、太赫兹传感、选择性光谱检测和偏振复用等领域有重要的潜在应用价值。  相似文献   

13.
李辉  余江  陈哲 《电波科学学报》2021,36(2):277-284
为进一步降低太赫兹频率下高性能调控器件的结构复杂度,提出一种三频段可调谐超材料完美吸收器.该吸收器由图案化的石墨烯层和经Si介质层隔开的Au接地平面组成,利用太赫兹下的石墨烯表面等离子体共振以及图案化石墨烯与电场耦合提供的电偶板子共振形成多个吸收峰.数值仿真结果表明,在0.489 THz、1.492 THz和2.437...  相似文献   

14.
提出了一种糖果型电阻膜宽带超材料吸波器。该吸波器的单元结构采用电阻膜-介质-电阻膜结构,其中顶层电阻膜为糖果型, 介质层由多种材料叠加而成, 介质层材料从顶至底依次为PET、FR-4、PMMA 和PET。CST 软件仿真结果表明本吸波器吸收率的峰值可达100%,吸收率超过99% 的频带宽度约为2.5 GHz, 超过90% 的频段能够完全覆盖X 波段, 部分覆盖Ku 波段,相对带宽为70%。随着电磁波入射角度的变化, 吸收峰所对应的中心频率稳定, 能够实现对相应频段的完美吸波,并且具有宽带吸波特性。  相似文献   

15.
多带太赫兹超材料吸收器是响应、操纵和调制太赫兹波的重要光子元件。本文基于周期性分裂环谐振器结构构建了一种多带太赫兹超材料吸收器。模拟和实验测试显示,在横磁(TM)极化情况下该超材料吸收器对0.918 THz和1.581 THz处的入射太赫兹波呈现出近似完美吸收。进一步,基于器件共振吸收峰的介电敏感特性,研究了负载不同浓度的多菌灵、三环唑、百草枯、塞苯隆4种农药溶液后超材料吸收器的传感性能,获得器件对4种农药的检测灵敏度分别为:1.06 GHz/ppm、0.65 GHz/ppm、0.67 GHz/ppm、2.07 GHz/ppm。结果表明该器件可实现对微量农药的传感检测,为今后食品质量安全控制提供了新的思路。  相似文献   

16.
太赫兹宽频带准全向平板超材料吸波体的设计   总被引:2,自引:2,他引:0  
在太赫兹波段设计了一种宽频带准全向的平板超材料吸波体.仿真结果表明,该吸波体在4.36~4.91THz之间具有极化不敏感和宽入射角的强吸收.提取的等效阻抗实部表明,可以通过调节超材料的电磁响应造成吸波体一侧与自由空间近似阻抗匹配、另一侧与自由空间阻抗不匹配,从而在吸收频带内同时实现反射率和传输率最小、吸收率最大.仿真的...  相似文献   

17.
路浩  陈鹤鸣 《红外》2022,43(3):31-39
为了解决宽带吸收器结构设计复杂的问题,提出了 一种结构简单、偏振不敏感、吸收性能优良的超材料太赫兹宽带吸收器.该吸收器采用对称结构设计,以金属层-介质层-金属层的三层架构为基础.其中,介质层中嵌入了两个不同尺寸的圆形金属片,从而形成多层结构.采用频域有限元法(Frequency Domain Finite Elemen...  相似文献   

18.
提出一种基于石墨烯的双波段太赫兹超材料吸收体,它由金属-电介质-石墨烯3层超材料结构单元在水平方向上进行周期性拓展而成。仿真结果显示,其在太赫兹波段6.62 THz和 9.36 THz分别产生99.9%和98.9%的高吸收率;通过改变石墨烯的费米能级,可以灵活地控制吸收体的谐振频率和吸收强度,而吸收体的吸收强度也可以利用石墨烯的弛豫时间进行单独控制。另外,研究了吸收体中间介质层厚度和介质损耗对吸收率的影响,这为吸收体初始加工工艺参数的确定提供了依据。研究结果表明,提出的基于石墨烯的太赫兹超材料吸收体结构简单,易于加工,可通过偏置电压或者化学掺杂,简单地实现吸收体的可调谐性,为双波段高吸收率太赫兹超材料吸收体的设计提供了重要参考。  相似文献   

19.
提出一种基于二氧化钒(VO2)超材料的吸收器,由3层结构组成,从上往下分别为2个VO2圆、中间介质层和金属底板。仿真数据表明,该吸收器有2个很强的吸收峰,分别为4.96 THz和5.64 THz,相对应的吸收率为99.1%和98.5%。利用阻抗匹配理论和电场分布进行分析,阐明了吸收的物理机制,并进一步分析了结构参数对吸收率的影响。所提出的吸收器具有可调谐的特点,能够灵活调控吸收率,为太赫兹波的调控、滤波等功能的实现提供了良好的方案。该吸收器在图像处理、生物探测和无线通信领域都有潜在的应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号