共查询到20条相似文献,搜索用时 0 毫秒
1.
提出了一种预煅烧和水泥固化/稳定化相结合的无害化处置含砷石膏渣方法,研究了预煅烧影响及砷固化机理. 含砷石膏渣中砷含量为8.56%,浸出毒性高达1097.5 mg/L,远高于《危险废物鉴别标准GB5085.3-2007》中危废鉴别值5 mg/L. 预煅烧温度为600和700℃时,石膏渣中亚砷酸盐分解导致总砷量和砷迁移性降低,砷浸出毒性可显著降低至较低水平(41.2和4.2 mg/L). 采用水泥固化可降低砷浸出毒性和控制砷泄露风险,较高温度(600和700℃)预煅烧后的石膏渣经水泥固化后抗压强度分别达4.2和5.2 MPa,砷浸出毒性分别达到0.98和0.22 mg/L,低于GB5085.3-2007危废限值. 砷以Ca2As2O7和AlAsO4形式被包裹或吸附在C?S?H水化产物中,降低了砷迁移性;预煅烧可加速石膏渣水泥固化中砷参与水泥水化和化合反应,导致更多且密实的AlAsO4和Ca2As2O7相形成,强化砷固化效果. 该方法有利于含砷量高和毒性高的含砷石膏渣处置,固化体可直接进入垃圾填埋场. 相似文献
2.
利用磷渣基胶凝材料为基体材料,对砷含量为7.62%的砷钙渣进行固化处理,可实现砷的安全固化.本文主要考察了化学外加剂、养护方式、骨料掺量等因素对砷固化体抗压强度和砷毒性浸出特性的影响.结果表明:FeC13的掺量在0.5% ~1.5%时,可有效地降低固化体砷毒性浸出,硫酸盐的掺量在0.6%~0.8%时,固化体的力学性能得到很好的提升;随着养护温度和压力的升高,固化体力学性能提高,砷毒性浸出浓度降低;固化过程中骨料的较佳掺量为15%~20%.XRD和SEM分析表明,固化体中砷主要以A1AsO4和Ca2As2O7等盐类形式存在,且被生成的水化硅酸钙凝胶及类沸石结构体牢牢地吸附和包裹. 相似文献
3.
以上海市黄浦江流域复兴岛运河段底泥为研究对象,通过添加混合氯盐对河道底泥进行水泥固化稳定化试验,根据固化样品的无侧限抗压强度及重金属浸出毒性试验结果,探究混合氯盐对河道底泥固化稳定化的影响。结果表明,以固化体养护7 d后的抗压强度作为指标,在水泥:干底泥质量比为4:6、含水率为40%的最优条件下,抗压强度可达1.72 MPa;最优配比下,在固化过程中添加2%的混合氯盐(25%氯化钾、30%氯化钠、25%氯化镁和20%氯化钙),底泥固化力学性能可增强52%,其原因可能是水化反应中Cl~-与Ca~(2+)结合生成了氯化钙,再与水泥中的其他物质反应时,可增大固化过程中的固相比例,从而增强力学性能。材料的重金属浸出试验结果表明其重金属稳定效率基本高于90%,说明该方法对重金属污染底泥的稳定化效果良好,但掺杂混合氯盐对金属稳定化的效果影响不大。 相似文献
4.
《现代化工》2020,(4)
对碱性材料和磷酸盐化学键合陶瓷材料(CBPCs)固化/稳定化处理电解锰渣(EMR)的效果以及固化机理等方面进行了综述。传统的碱性材料虽可有效固化EMR中的重金属离子,但处理后的EMR的物理化学性质不够稳定,固化体很容易因碳化而发生结构破坏,存在二次污染隐患。而用CBPCs固化EMR虽可实现Mn以及NH_3-N稳定化控制,但施工操作性差,且反应原料MgO成本较高。利用富含金属氧化物(MgO、FeO_x)的镍铁渣或铜渣等工业废渣代替纯MgO,不仅可降低材料处理成本、改善施工可操作性,同时可通过化学键合、物理包裹、吸附等协同作用实现EMR的有效固封。此方法可为EMR处理提供一种研究思路。 相似文献
5.
《硅酸盐学报》2016,(5)
将新鲜的硅酸盐水泥暴露于(20±2)℃,相对湿度为85%~90%的环境中,研究了硅酸盐水泥因暴露于湿空气中产生预水化而对水泥标准稠度用水量、水泥水化行为、水泥胶砂强度以及水泥与聚羧酸系减水剂(PCE)间相互作用的影响。结果表明:随着暴露时间的增长,水泥预水化速率不断降低,标准稠度用水量则先轻微减小后显著增加,预水化4 d的水泥具有最小的标准稠度用水量;预水化作用总体上降低了水泥水化温峰值及水泥水化放热速率,但对于预水化作用不超过10 d的水泥。在其水化200~500 min期间,预水化水泥的水化放热速率随预水化时间的延长而增大,对于预水化10 d的水泥,其水化放热速率甚至一度高于新鲜水泥,这可能会导致预水化水泥的异常凝结。此外,预水化作用不利于胶砂强度的发展,且对抗折强度的不利影响尤为显著。预水化作用还会影响PCE的分散效果,随着预水化时间的延长,PCE的分散性及其分散保持性先增大后减小,对预水化4 d的水泥分散效果最佳,其初始流动度达到新鲜水泥的136%,且120 min后的浆体流动度仍高达235 mm。PCE对预水化20 d和30 d的水泥无分散效果。 相似文献
6.
7.
8.
利用含砂废弃混凝土原料煅烧水泥熟料,不可避免地会由细骨料砂引入结晶度较高的结晶态SiO2,不仅影响生料易烧性,而且影响硅酸盐矿物的组成和形貌,降低熟料质量。以ISO标准砂为硅质原料配制高结晶态SiO2含量的生料,按不同比例掺入矿渣,煅烧至不同温度;利用化学分析、XRD、岩相分析、SEM等方法,研究矿渣对水泥生料易烧性、熟料矿物组成和显微结构、熟料水化强度发展及水化产物形貌的影响。结果表明,适量矿渣的掺入可显著改善高结晶态SiO2含量水泥生料的易烧性,促进熟料矿物形成和发育;矿渣掺量为3%时,熟料水化后强度最高;适量矿渣可使熟料水化早期产生较多的C-S-H凝胶和钙矾石,而后期水化产物中C-S-H凝胶更密实,提高水泥强度。 相似文献
9.
10.
利用微米尺度、无定形二氧化硅与氧化钙制备层间距d(002)为1.13 nm的托贝莫来石,研究了托贝莫来石高温煅烧过程中的结构变化和在725℃时的微结构变化规律。结果表明:725℃煅烧2 h后,部分托贝莫来石形成类单斜链状的硅灰石结构(结晶态)和脱羟基托贝莫来石(无定形态);这种无定型的亚稳状态结构的外貌和托贝莫来石的晶体外貌相似,都是针状、片状的晶体,和大量由片状与针状堆积形成的颗粒状结构;在725℃煅烧温度下,部分微米、亚微米尺度的托贝莫来石转变为单斜链状的硅灰石结构。 相似文献
11.
《硅酸盐学报》2016,(8)
对比研究了含与不含氧化硼对铝酸钙水泥水化行为的影响。通过测试水泥净浆的水化放热曲线,对比分析了铝酸钙水泥中的氧化硼杂质含量对水泥水化速率的影响,以及水泥水化时的电导率随养护时间的变化,阐述了该杂质对水泥溶解沉淀速率的影响。通过冷冻真空干燥的方法中止水泥水化,继而用X射线衍射和热重分析研究了上述两种水泥净浆的水化产物组成。用维卡仪测定了水泥砂浆的凝结时间,用跳桌法测定了水泥结合浇注料的流动值衰减。结果表明:铝酸钙水泥中的氧化硼杂质缩短了水泥的水化诱导期,加速了水泥水化形成大量沉淀的进程,从而促进了水泥的水化,缩短了砂浆的凝结时间,并加快了水泥结合浇注料的流动值衰减速度。 相似文献
12.
采用铁盐溶液浸渍的方法对黄磷水淬渣进行改性,以提高其对废水中As (Ⅲ)的去除效率。考察改性过程中铁盐种类、铁盐浓度、熟化温度及熟化时间四个因素对改性黄磷水淬渣吸附砷性能的影响:浸渍铁盐溶液为FeCl3、浓度0.8 mol/L、熟化温度80℃和熟化时间6 h。通过比表面积和孔径测定( BET)、扫描电镜(SEM)和傅里叶红外光谱( FT-IR)对改性前后黄磷水淬渣的表面性能和结构进行表征。在最佳条件下制备的改性黄磷水淬渣比表面积增大、Fe3+和-OH含量升高,对废水中As(Ⅲ)的去除率可达到99.1%。改性后的黄磷水淬渣表面有铁负载,增加了其对废水中As(Ⅲ)的吸附性能。 相似文献
13.
14.
试验研究了044B杂环芳纶布性能、3233/044B预浸料制备及其复合材料力学性能.结果表明,044B杂环芳纶布性能较好,3233/044B复合材料的常规性能和耐热性较好,夹层结构的滚筒剥离强度高,树脂具有韧性,适用于复合材料夹层结构.该预浸料已用于航空复合材料制件. 相似文献
15.
双氧水催化氧化Fe(Ⅱ)共沉淀砷的过程中,采用不同的pH调整剂调节溶液的pH,研究了不同的pH调整剂对废水中砷沉淀效果及沉淀渣性质的影响。结果表明:采用Na2CO3和CaO作为pH调整剂时有利于废水中砷的脱除,生成的共沉淀渣中砷主要是以无定形的非晶态块状颗粒形式存在的;使用Na2CO3作为pH调整剂时最有利于沉淀渣颗粒的长大,所得沉淀渣粒径最大,但是砷渣的稳定性最差,更容易从渣中释放出砷;采用CaO获得的沉淀渣中由于CaSO4棒状颗粒的存在,渣的粒径相对较小,但砷的存在形式最为稳定,固砷效果最好。 相似文献
16.
γ辐射和高温对放射性废物水泥固化体强度的影响(英文) 总被引:1,自引:0,他引:1
为了处理高活性、放热性C级放射性废弃物,在比利时通常采用圆柱体混凝土"超级容器"作为基本途径。"超级容器"是合成的废弃物包,废弃物由碳钢包裹组成,碳钢被波特兰水泥制成的"缓冲器"包裹。自密实混凝土作为一种特殊类型的混凝土,正被考虑用来制备"缓冲器"。一旦"缓冲器"被浇筑并且硬化程度很高时,放射性废弃物就被包裹在"缓冲器"内,存在的缝隙可以采用新拌灌浆料填充(例如自密实砂浆)。用盖子将"超级容器"密封后应用于"超级容器"的混凝土层,即混凝土缓冲器、灌浆料及盖子在硬化期间(灌浆料)与硬化之后("缓冲器"与盖子)将暴露在废弃物热场与辐射场内。因此,需要解决2个主要的问题:1)γ射线(α与β射线被碳钢包裹层阻断,中子的影响可以忽略)对灌浆料硬化强度的影响;2)温度升高(从20℃升高到105℃)对硬化试件强度的影响。为了证实强度是否损失并确定强度损失后的主要机理,采用荧光显微镜,在砂浆或混凝土薄片的截面上直接分析毛细孔隙率。 相似文献
17.
《硅酸盐学报》2015,(10)
硅酸盐水泥中硫酸盐通常以碱金属硫酸盐、硫硅酸钙、硫铝酸钙、硬石膏、二水石膏等形式存在。不同类型硫酸盐在水泥中的含量分布与溶解特性以及对混凝土性能的影响有明显差异。碱金属硫酸盐是熟料中的主要硫酸盐,以硫酸钾、硫酸钠、硫酸钠钾和钾钙复盐形式存在,在参与水泥水化时快速溶出对混凝土早期性能,包括凝结时间、水泥与减水剂相容性、早期强度等有着重要影响,其中硫酸钠和硫酸钠钾复盐的不利影响更为显著。熟料中可能含有少量硬石膏,用作混合材的固硫灰渣和粉煤灰等废渣含有较高含量的硬石膏,在水泥和混凝土中作用与二水石膏相近,但含量过高时应关注其对混凝土性能可能的不利影响。贝利特含有少量硫酸盐,随着贝利特的后期缓慢水化,释放出的硫酸盐可能有利于混凝土的后期强度发展以及体积稳定性,但在早期高温养护条件下,且贝利特含量较高时,贝利特含有的硫酸盐也有可能引起后期混凝土延迟钙矾石生成甚至膨胀开裂破坏。其他类型硫酸盐包括硫铝酸钙、硫硅酸钙和钾石膏在硅酸盐水泥中的含量分布以及对混凝土性能的影响还有待更进一步的认识。 相似文献
18.
1 掺多元矿化剂配料与熟料中SO_3含量 2 外掺石膏量对水泥水化过程及物理力学性能的影响 2.1 影响外掺石膏量的因素 2.1.1 熟料中C_3A矿物的含量及熟料配比量 熟料中C_3A矿物含量高及熟料配比量较多时,应适当提高石膏的掺入量。反之,则应降低石膏掺加比例。熟料中C_3A是个比较特殊的矿物,从水化热、放热速率、硬化速 相似文献
19.
20.
黄石地区无烟煤中全硫量达4~5%左右,煤中硫以无机低价硫(FeS_2)形式存在,利用高硫煤与铜矿渣、萤石组成FeS_2-FeO-CaF_2多元矿化剂用于生料配料,SO_3以CaSO_4或CaS形式残存固溶于熟料中,其含量多在1.7~2.4%之间。本文以实际生产数据,讨论了采用多元矿化剂配料时熟料中SO_3含量及外加石膏量对水泥物理力学性能的影响。 相似文献