共查询到16条相似文献,搜索用时 31 毫秒
1.
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。 相似文献
2.
为了及时发现抽油机故障,减少生产成本,提高生产效率,通过分析不同形状的抽油机示功图来及时准确地判断抽油机工作状况很有必要。传统人工识别方法不能实现抽油机工况实时诊断,而传统智能算法识别准确度低,故提出一种基于栈式稀疏自编码器的抽油机示功图识别方法,用于抽油机故障诊断。该方法通过栈式稀疏自编码器自动提取示功图数据深层可分性特征,然后利用学习到的特征结合对应的样本标签通过支持向量机进行有监督训练与分类。将采集的中原油田实测示功图对该方法进行实验,结果表明该方法具有较高的示功图识别速度和识别准确度。该方法为快速准确地进行抽油机故障诊断提供了参考。 相似文献
3.
针对行星齿轮传动系统典型故障的识别,提出一种基于信号混合特征和混沌果蝇优化算法-广义回归神经网络(CFOA-GRNN)的故障诊断方法。计算信号的几种典型时域统计特征,并通过小波包分解获取信号频域能量特征,得到信号混合特征向量作为广义回归神经网络(GRNN)的输入;采用混沌扰动改进的果蝇优化算法对GRNN进行参数寻优,构建最优诊断模型;利用采集的行星齿轮箱实验台不同工况数据进行实验和对比。结果表明:所提方法能够有效识别不同工况下齿轮箱的不同故障;与其他模型相比,它具有参数设置简便、主观因素影响小、寻优速度快等优势,具有较好的实用性。 相似文献
4.
饶雷;唐向红;陆见光 《组合机床与自动化加工技术》2020,(8):130-133+142
针对以数据驱动的齿轮箱故障诊断过程中存在特征提取复杂、分类器对特征存在较强的依赖性等问题,提出了一种基于卷积神经网络(CNN)和支持向量机(SVM)相结合的齿轮箱故障诊断模型。该诊断模型以多传感器采集的原始振动信号作为模型的输入,通过卷积神经网络完成特征的自适应提取,然后在特征级上将各传感器的特征进行融合,最后将融合特征输入到支持向量机进行故障的分类。经过实验证明,该模型直接以原始信号进行故障诊断的准确率能达到96.3%,且提取的特征在经过融合过后有很高的区分度;相比于基于特征工程的特征提取方法,基于特征学习的特征提取方法提取的特征对齿轮箱故障诊断更有效。 相似文献
5.
6.
行星齿轮箱具有传动比大、传动效率高等优点,但比定轴齿轮有更复杂的结构,因常工作在恶劣的条件下,容易出现磨损或疲劳裂纹等故障。为有效诊断行星齿轮传动故障,本文采用基于扭振信号的故障诊断方法,并利用增量式编码器采集扭振信号。通过与横向振动信号相比,发现扭振信号频谱结构简单、对故障特征更加敏感。通过对行星轮故障实验扭振信号的分析,故障下的故障特征频率幅值有2倍的提升。角速度形式的扭振信号能准确诊断故障,为行星齿轮箱故障诊断提供了简明有效的途径。 相似文献
7.
针对目前大多数机械故障诊断中单一振动加速度信号特征提取对先验知识要求高和对时域、频域信息利用不充分等问题,提出了一种基于信息融合的稀疏自编码故障诊断方法。首先,对振动加速度信号进行频域积分得到速度和位移信号,同时计算加速度信号的频谱;其次,将频谱、速度、位移三种信号融合成一个复合信号;最后,将复合信号作为稀疏自编码网络的输入进行深度特征提取,利用SoftMax分类器进行状态识别。通过调整不同比例的输入信息来调整模型,并与传统的稀疏自编码故障诊断模型相比,结果表明,所提方法能有效识别滚动轴承故障和RV行星轮故障,且在减少网络层数的同时能够提高识别准确率。 相似文献
8.
局域均值分解(Local Mean Decomposition,LMD)是近年来出现的一种新的时频分析方法,在机械设备故障诊断领域中的应用日益广泛。针对齿轮箱振动故障信号的非平稳性和非线性,提出了一种基于局域均值分解和径向基函数神经网络(Radial Basis Function Neural Network,RBF)相结合的齿轮箱故障诊断方法。该方法利用小波包对原始信号进行消噪;利用LMD对处理后信号进行分解,得到一系列PF分量(Product Function,PF);选取包含主要故障信息的PF分量并从中提取偏度系数等特征参数对RBF神经网络进行训练,并对齿轮箱故障进行识别和分类。通过实例验证了该方法的有效性。 相似文献
9.
在齿轮箱故障诊断实验台的设计中,系统以工作台、传感器、信号调理器、数据采集卡、PC机为硬件开发平台,以LABVIEW为软件开发平台,将虚拟仪器技术运用到齿轮箱的故障诊断系统中,使得系统测试、显示和诊断功能更为强大. 相似文献
10.
针对噪声环境下一维卷积神经网络单一卷积拓扑结构难以准确诊断齿轮箱故障的难题,提出一种基于二维特征图和深度残差收缩网络(TM-DRSN)的故障诊断方法。根据采集到的齿轮箱振动信号,基于重叠采样方法获取故障数据样本,并分为训练集和测试集;基于横向插样法将一维数据样本构建成便于DRSN输入的二维特征图,在DRSN输入层构建宽卷积核层作为第一特征提取层;将残差收缩模块加入深度卷积神经网络中替换由传统卷积和池化组成的特征提取层;叠加多个残差收缩模块得到深度残差收缩网络模型;将构建的DRSN用于噪声环境下的轴承故障诊断试验。结果表明:TM-DRSN方法的故障诊断精度优于其他对比方法。 相似文献
11.
针对目前机械设备故障数据量大、多样性且主要采用监督式学习提取故障特征的现状,提出一种堆叠稀疏自编码深度神经网络,实现无监督学习提取振动信号内在特征,并用于滚动轴承故障诊断。将频谱包络线作为低层输入逐层训练网络,获取故障特征表达,输入Softmax分类器实现故障分类;通过优化算法对整个深度神经网络进行微调,提高分类精度。滚动轴承故障诊断实验结果表明:所提出的深度神经网络能更准确地实现故障诊断,且在保证准确率的同时将频谱包络线作为低层输入,能够提高计算效率 相似文献
12.
风机在多种工况条件下运行时,利用轴承的振动监测系统所检测到的信号难以实现故障诊断,而大量文献研究的轴承故障诊断多是在恒定转速下进行的。针对变工况下运行的滚动轴承,提出一种基于SHO-VMD分解和多特征参数融合的特征提取方法,使用t-SNE降维可视化,提取出振动信号的故障信息与转速变化信息。变分模态分解(VMD)方法的分解效果取决于分解个数和惩罚因子的取值,采用自私羊群优化算法(SHO)对参数进行优化,将振动信号分解为一些本征模态分量,再对每组分量进行特征参数提取,基于奇异值特征、能量熵、样本熵特征进行多特征量融合,使用t-SNE降维来提取轴承故障信息以及速度变化信息,实验结果表明:提出的方法可以有效提取出轴承的故障和速度信息。 相似文献
13.
基于冲击脉冲法的齿轮箱轴承故障诊断 总被引:1,自引:0,他引:1
齿轮箱作为机械设备中的关键部件,其安全服役性能评估及寿命预测环节是非常重要的。因此,设计了一套基于冲击脉冲法的齿轮箱轴承故障检测系统。探究了检测系统的设计原理,并进行硬件选型(如NI四通道数据采集卡、加速度传感器等)、软件模块设计(如数据采集模块、分析和处理模块等)。根据车间现场条件制定齿轮箱轴承跑合检测试验方案,分别测试了不同返修级别(4级修、5级修)的齿轮箱轴承。对检测结果进行分析,表明:所设计的齿轮箱轴承检测系统能够实现对不同返修级别的齿轮箱轴承系统进行故障状态甄别,具有较高的稳定性,可为初步判定不同返修级别的齿轮箱轴承中磨损程度或故障状态提供数据支撑。 相似文献
14.
旋转机械转子-转轴系统故障诊断方法中大多采用传统浅层模型,对于数量较大的样本其处理能力有限。为解决此问题,提出一种利用改进的堆叠降噪自动编码器(SDAE)深度模型的故障诊断方法,并对转子-转轴系统的典型故障进行诊断。利用某机械故障综合模拟实验台,结合基于LabVIEW开发的信号采集系统模拟并采集转子-转轴系统的10类单一故障和7类复合故障振动信号。在训练SDAE模型时引入Dropout机制对模型进行改进,并结合Softmax分类器进行网络训练与诊断。与传统BP网络、自动编码器(AE)、无Dropout机制的SDAE和卷积神经网络(CNN)进行对比,结果表明:改进的SDAE方法对于转子-转轴系统故障的正确识别率最高,特别是对复合故障的诊断效果比其他模型更理想,充分验证了改进的SDAE深度模型的优越性 相似文献
15.
16.
针对齿轮箱故障诊断需要大量专家经验知识、人工提取特征困难的问题,提出基于特征差异性学习卷积神经网络(FDLCNN)的故障诊断方法。构建不同深度的多尺度网络,并引入残差模块,以提升网络的特征提取能力;提取一维时序信号中不同尺度不同深度的故障特征,再通过自适应平均池化层处理后进行特征融合,以丰富智能诊断决策信息;最后在全连接层实现特征降维,使用Softmax分类器输出诊断结果。利用10种齿轮箱故障状态实验数据与现有3种方法进行对比分析,结果表明:FDLCNN故障识别精度更高,鲁棒性更强,收敛速度更快。 相似文献