共查询到15条相似文献,搜索用时 62 毫秒
1.
针对提取有效滚动轴承特征和消除特征之间的冗余,提出一种基于堆栈稀疏自编码器和Softmax层构建的深度神经网络(DNN)用于轴承故障诊断。首先从振动信号提取12个统计特征和6个时频域特征,然后将获得的特征用于构建18维特征向量;高维特征向量通过堆栈稀疏自编码器逐层贪婪学习获得无冗余的高级特征;最后将高级特征输入Softmax分类层进行轴承故障诊断。实验结果表明:相比于传统BP和SVM分类器,DNN能更准确地识别滚动轴承故障类型。 相似文献
2.
为了及时发现抽油机故障,减少生产成本,提高生产效率,通过分析不同形状的抽油机示功图来及时准确地判断抽油机工作状况很有必要。传统人工识别方法不能实现抽油机工况实时诊断,而传统智能算法识别准确度低,故提出一种基于栈式稀疏自编码器的抽油机示功图识别方法,用于抽油机故障诊断。该方法通过栈式稀疏自编码器自动提取示功图数据深层可分性特征,然后利用学习到的特征结合对应的样本标签通过支持向量机进行有监督训练与分类。将采集的中原油田实测示功图对该方法进行实验,结果表明该方法具有较高的示功图识别速度和识别准确度。该方法为快速准确地进行抽油机故障诊断提供了参考。 相似文献
3.
针对行星齿轮传动系统典型故障的识别,提出一种基于信号混合特征和混沌果蝇优化算法-广义回归神经网络(CFOA-GRNN)的故障诊断方法。计算信号的几种典型时域统计特征,并通过小波包分解获取信号频域能量特征,得到信号混合特征向量作为广义回归神经网络(GRNN)的输入;采用混沌扰动改进的果蝇优化算法对GRNN进行参数寻优,构建最优诊断模型;利用采集的行星齿轮箱实验台不同工况数据进行实验和对比。结果表明:所提方法能够有效识别不同工况下齿轮箱的不同故障;与其他模型相比,它具有参数设置简便、主观因素影响小、寻优速度快等优势,具有较好的实用性。 相似文献
4.
5.
6.
针对目前大多数机械故障诊断中单一振动加速度信号特征提取对先验知识要求高和对时域、频域信息利用不充分等问题,提出了一种基于信息融合的稀疏自编码故障诊断方法。首先,对振动加速度信号进行频域积分得到速度和位移信号,同时计算加速度信号的频谱;其次,将频谱、速度、位移三种信号融合成一个复合信号;最后,将复合信号作为稀疏自编码网络的输入进行深度特征提取,利用SoftMax分类器进行状态识别。通过调整不同比例的输入信息来调整模型,并与传统的稀疏自编码故障诊断模型相比,结果表明,所提方法能有效识别滚动轴承故障和RV行星轮故障,且在减少网络层数的同时能够提高识别准确率。 相似文献
7.
局域均值分解(Local Mean Decomposition,LMD)是近年来出现的一种新的时频分析方法,在机械设备故障诊断领域中的应用日益广泛。针对齿轮箱振动故障信号的非平稳性和非线性,提出了一种基于局域均值分解和径向基函数神经网络(Radial Basis Function Neural Network,RBF)相结合的齿轮箱故障诊断方法。该方法利用小波包对原始信号进行消噪;利用LMD对处理后信号进行分解,得到一系列PF分量(Product Function,PF);选取包含主要故障信息的PF分量并从中提取偏度系数等特征参数对RBF神经网络进行训练,并对齿轮箱故障进行识别和分类。通过实例验证了该方法的有效性。 相似文献
8.
在齿轮箱故障诊断实验台的设计中,系统以工作台、传感器、信号调理器、数据采集卡、PC机为硬件开发平台,以LABVIEW为软件开发平台,将虚拟仪器技术运用到齿轮箱的故障诊断系统中,使得系统测试、显示和诊断功能更为强大. 相似文献
9.
10.
针对噪声环境下一维卷积神经网络单一卷积拓扑结构难以准确诊断齿轮箱故障的难题,提出一种基于二维特征图和深度残差收缩网络(TM-DRSN)的故障诊断方法。根据采集到的齿轮箱振动信号,基于重叠采样方法获取故障数据样本,并分为训练集和测试集;基于横向插样法将一维数据样本构建成便于DRSN输入的二维特征图,在DRSN输入层构建宽卷积核层作为第一特征提取层;将残差收缩模块加入深度卷积神经网络中替换由传统卷积和池化组成的特征提取层;叠加多个残差收缩模块得到深度残差收缩网络模型;将构建的DRSN用于噪声环境下的轴承故障诊断试验。结果表明:TM-DRSN方法的故障诊断精度优于其他对比方法。 相似文献
11.
基于冲击脉冲法的齿轮箱轴承故障诊断 总被引:1,自引:0,他引:1
齿轮箱作为机械设备中的关键部件,其安全服役性能评估及寿命预测环节是非常重要的。因此,设计了一套基于冲击脉冲法的齿轮箱轴承故障检测系统。探究了检测系统的设计原理,并进行硬件选型(如NI四通道数据采集卡、加速度传感器等)、软件模块设计(如数据采集模块、分析和处理模块等)。根据车间现场条件制定齿轮箱轴承跑合检测试验方案,分别测试了不同返修级别(4级修、5级修)的齿轮箱轴承。对检测结果进行分析,表明:所设计的齿轮箱轴承检测系统能够实现对不同返修级别的齿轮箱轴承系统进行故障状态甄别,具有较高的稳定性,可为初步判定不同返修级别的齿轮箱轴承中磨损程度或故障状态提供数据支撑。 相似文献
12.
针对风电机组齿轮箱的故障诊断中特征提取过分依赖人为经验和准确率不高的问题,提出一种基于长短时记忆网络(LSTM)与支持向量机(SVM)相结合的方法。对原始时域振动信号作傅里叶变换,利用LSTM神经网络自适应智能提取特征的优势,结合SVM的分类功能,实现对风电机组齿轮箱更加准确的故障诊断。仿真结果显示,该网络模型在经过16轮训练后准确率可以达到100%,使用测试集数据准确率也可以达到99.1%。 相似文献
13.
受背景噪声和传输路径的影响,故障信号往往被淹没,故障特征难以提取。基于此,提出一种连续变分模态分解(SVMD)和自适应MOMEDA相结合的故障诊断方法,通过SVMD前处理得到重构信号,然后以平均谱负熵为适应函数,通过人工鱼群优化算法自适应选择MOMEDA的最优参数。利用所得参数对重构信号进行MOMEDA滤波,最后进行包络谱分析,做出故障类型诊断。将所提方法应用于齿轮箱主动轮断齿故障的仿真信号和实验信号中,在包络频谱中可以清楚地分辨出小齿轮转频及其倍频, 同时所提方法相对其他方法具有更好的表现效果。 相似文献
14.
齿轮箱是各种机械设备上重要的传动部件,齿轮故障诊断对设备的长期安全运行起着至关重要的作用。阐述了近年来国内外齿轮传动系统故障特征提取和模式识别方法的研究现状;介绍了倒频谱分析的原理及其在齿轮箱诊断中的优点;在对齿轮箱的振动信号进行幅值谱、功率谱分析的基础上,利用倒谱分析诊断出齿轮箱中的点蚀故障,并确定点蚀故障所在的齿轮,证明了倒谱分析的有效性和可行性。 相似文献