首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 46 毫秒
1.
橡胶具有良好的压缩性和回弹性及良好的气密性、耐溶剂性等性能,是航空航天、石油化工、汽车工业等领域必不可少的密封材料。然而,实际服役中其因摩擦因数极高(≥1)而易磨损失效,进而引发密封介质泄漏,严重影响设备安全性及服役寿命。类金刚石碳基薄膜由于其高硬度、化学惰性、低摩擦磨损特性等被认为是最有前景的橡胶表面耐磨改性涂层。一方面,通过调整薄膜沉积参数可以控制薄膜灵活度和沉积温度,足够的灵活度要求薄膜能够适应橡胶软基底形变而不会发生崩落,而低的沉积温度可以避免降解或破坏橡胶基底;另一方面,碳基薄膜的化学成分(主要包括碳和氢)与橡胶展现出极好的相容性,可以确保其良好的结合强度。综述了近20年来橡胶表面碳基薄膜耐磨改性研究的重要结果和最新进展,总结了目前研究中尚未解决的问题及未来的研究方向。  相似文献   

2.
层状固体润滑薄膜的研究进展   总被引:2,自引:0,他引:2  
层状物固体润滑薄膜是固体润滑薄膜中最常用的形式.本文针对4种有代表性的层状物固体润滑薄膜(硫化亚铁、二硫化钼、石墨及二硫化钨薄膜)的制备方法及摩擦学性能进行了详细论述,这些薄膜都具有优良的减摩、耐磨、抗擦伤性能,但不同的薄膜其摩擦学性能有差异,适用工况也不尽相同.  相似文献   

3.
崔龙辰  余伟杰 《表面技术》2019,48(12):150-159
现代工业的迅猛发展迫使愈来愈多的机械零部件需要在高温下运转,因此高温润滑材料的匹配发展至关重要。在摩擦表面沉积固体润滑薄膜是降低高温下机械装备的摩擦与磨损,提高其使用寿命和可靠性的有效手段。近年来,类金刚石碳(Diamond-like carbon,DLC)薄膜的高温摩擦学得到了广泛研究,并取得了一些重要的进展。大量研究表明,通过适当的元素掺杂可以显著提高DLC薄膜的高温摩擦学性能。首先分别综述了纯碳DLC薄膜、含氢DLC薄膜、Si掺杂DLC薄膜、金属元素掺杂DLC薄膜、元素共掺杂DLC薄膜的高温摩擦学研究进展。通过总结文献中的数据,绘制了各种DLC薄膜的摩擦系数随温度的变化曲线,进而确定了各种薄膜的有效润滑温域。在此基础上,提出了几种有望实现宽温域连续润滑的DLC薄膜新体系,并分析了DLC薄膜的高温润滑失效机理,强调了分子/原子的热扩散和薄膜的热应力在DLC薄膜高温润滑失效中的作用。最后,从提高DLC薄膜自身的高温摩擦学性能和提高DLC薄膜与基材的高温结合性能两个方面,对今后亟待开展的研究工作进行了展望。  相似文献   

4.
《表面工程资讯》2014,(1):28-29
正中国科学院兰州化学物理研究所低维材料摩擦学课题组在高真空环境下类金刚石碳基薄膜摩擦机理研究方面取得新进展。研究工作相继发表在近期出版的ACS Appl.Mater.Interfaces(2013,5,5889~5893)和Carbon(2014,66,259~266)。具有优异摩擦学性能的类金刚石薄膜(DLC)是从微观尺度的微机电系统到宏观尺度的工程部件都具有广泛应用的固体润滑材料。然而,由于对DLC的摩擦机理还缺乏深入理解,难于控制DLC在不同环境中的摩擦学行为,从而极大地限制了其实际应用。研究人员从不同的角度出发提出了DLC减摩抗磨机制,包括化学吸附钝化理论、滑行界面的石墨化理论和转移膜理论,但是到目前为止还没有提出一个被普遍接受的摩擦机理。  相似文献   

5.
针对读者来信咨询有关固体润滑的问题,2月12日清华大学刘家浚教授接受了本刊记者的采访。  相似文献   

6.
以CH4为碳源,氩气为辅助气体,利用射频等离子体增强化学气相沉积(RF-PECVD)的方法在种植体连接螺丝上制备了类金刚石(Diamond-like carbon,DLC)薄膜。采用拉曼光谱仪(Raman)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、摩擦磨损试验机、纳米压痕仪等仪器对薄膜的结构、成分、形貌、机械及摩擦学特性进行表征。结果表明,所制备薄膜致密、平滑,均匀性较好。纳米压痕测试及生理盐水环境中的摩擦磨损试验显示,DLC薄膜具有较高的硬度和良好的生物润滑性,可作为种植体连接螺丝表面的承载减摩涂层。  相似文献   

7.
利用非平衡磁控溅射技术在316L不锈钢基底和316L不锈钢基底喷焊Ni60C涂层表面分别制备a-C、a-C:H、a-C:Cr3种类金刚石碳基(DLC)薄膜,对比分析了不同防护体系在5%H_2SO_4(质量分数)溶液中的耐磨蚀性能。结果表明:较单层DLC薄膜,Ni60C/DLC复合体系膜-基结合强度大幅提高,腐蚀磨损性能显著改善,其摩擦系数在0.05~0.14之间,腐蚀磨损率在0.66×10~(-8)~5.7×10~(-8) mm~3/N·m之间。Ni60C涂层作为硬质支撑层提高了薄膜的承载能力,且有效抑制了腐蚀摩擦过程中碳基(DLC)薄膜的石墨化进程,提高了Ni60C/DLC复合体系耐磨蚀性能。  相似文献   

8.
以环戊二烯为碳源,采用等离子体增强化学气相沉积法(PECVD)在Si单晶〈n100〉面上制备了类金刚石薄膜。采用FEI Tecnai F30型高分辨透射电镜(HRTEM)和LAMRAM HR 800型拉曼光谱仪对薄膜及磨屑的结构进行表征;利用MFTR4000摩擦磨损试验机、Hysitron Ti950型原位纳米力学测试系统考察薄膜的摩擦学及力学性能。结果表明: 所制备的金刚石薄膜具有富勒烯纳米团簇/非晶复合纳米结构,在磨屑中也出现了这种稳定的片层结构从而起到了良好的减摩作用;并且薄膜表现出优异的力学性能和摩擦学性能: 其硬度为26.8 GPa、弹性回复为85%、摩擦因数为0.01。由于这种特殊纳米结构的存在,使得薄膜的力学性能及摩擦学性能显著提高。  相似文献   

9.
评述了类金刚石基(DLC、a-C)、非晶氮化碳基(a-CNx)、过渡金属氮化物基(TiN、CrN)及其改性纳米复合薄膜的水润滑摩擦学性能,分析了微观结构、梯度结构、元素掺杂、对磨材料及摩擦参数对其水润滑摩擦磨损性能的影响,并揭示了水润滑中纳米复合薄膜存在的摩擦磨损机制,指出了三种纳米复合薄膜体系在水润滑中均可表现出优异的减摩抗磨特性,但与薄膜成分、层状结构、力学性能及对磨材料物理化学性能密切相关。一般而言,相比于过渡金属氮化物基薄膜,类金刚石基及非晶氮化碳基薄膜由于在水润滑中形成转移层和水合润滑层而呈现出更低的摩擦系数和磨损率。当选用的对磨材料易于发生摩擦水合反应时,形成的水合层起到的保护作用使得纳米复合薄膜均表现出了更低的磨损率。在保证薄膜未发生剥落而失效时,适当地加载载荷和滑移速度也是获得最优水润滑摩擦学性能的关键因素。为薄膜应用在水润滑器械作业提供了一定的参考,并展望了纳米复合薄膜水润滑摩擦学未来的研究方向。  相似文献   

10.
在现代工业中,使用润滑材料降低摩擦磨损已成为提高机械元件耐久性和提高机械效率的重要手段.其中,润滑添加剂已被广泛证明能够进一步改善润滑介质的润滑性能,因此研究润滑添加剂的摩擦学表现是必要的.纳米材料作为润滑添加剂,能有效提高基础润滑介质的减摩、抗磨和极压性能,改善机械系统摩擦学性能,对节能减排和环保具有重要意义.石墨烯...  相似文献   

11.
为了研究Si掺杂对无氢非晶碳基薄膜摩擦磨损性能的影响,利用直流磁控溅射技术在单晶硅和304不锈钢基底上沉积不同Si含量的无氢非晶碳基薄膜。采用SEM、Raman光谱、纳米压痕仪等分析手段对薄膜的成分、结构和力学性能进行表征。利用球盘式往复摩擦试验机测试薄膜在无润滑条件下的滑动摩擦磨损性能。结果表明:Si掺杂能降低薄膜内应力和促进sp3杂化,高于10%的Si原子导致薄膜硬度增加。在不同湿度条件下,Si掺杂并未明显影响溅射无氢非晶碳基薄膜的摩擦因数;相反,含Si薄膜在不同测试条件下都具有较高的磨损速率。薄膜磨损速率随相对湿度增加而减小,随Si含量增加而增加;高Si含量薄膜在低湿度条件下具有明显不稳定的摩擦因数和显著增加的磨损速率。这意味着在设计和发展性能优异的无氢非晶碳基摩擦学涂层时,应充分考虑Si掺杂导致的性能损失。  相似文献   

12.
谢红梅 《表面技术》2011,40(3):90-93,97
类金刚石薄膜(DLC)具有优良的摩擦磨损性能,但是DLC薄膜的摩擦学特性强烈依赖于制备技术、摩擦接触点的表面化学状态和物理状态,因此进一步提高类金刚石薄膜的摩擦学特性是目前的热门研究方向之一.在综合分析了近年来该领域研究的基础上,总结了影响DLC薄膜摩擦学性能的因素,并分析了各个因素的影响机理,以期找出一些规律为适应类...  相似文献   

13.
目的 研究乏油工况下GLC和DLC两种碳膜在航空轴承上的应用。方法通过磁控溅射技术在单晶硅片P(100)、轴承钢样块和轴承套圈表面分别制备了GLC和DLC两种薄膜。利用扫描电镜(SEM)、拉曼光谱对薄膜的截面和磨痕形貌及结构进行了分析。利用纳米压痕仪、摩擦磨损试验机等对薄膜的力学性能和摩擦学性能进行了研究。利用轴承试验机对镀两种膜的轴承进行了对比研究。结果 GLC和DLC两种碳基薄膜均结构致密,GLC薄膜含有更多的sp2,DLC薄膜含有更多的sp3;两种薄膜硬度分别达到18.2 GPa和22.2 GPa,弹性模量分别达到230.2 GPa和260.8 GPa,干摩擦条件下,薄膜摩擦系数分别低至0.11和0.21。镀膜轴承在运转0~10 h时,温升无明显差异;10~30 h过程中,镀GLC薄膜轴承温升约为40~45 ℃,而镀DLC薄膜轴承温升约为50~55 ℃。运转后,轴承滚子上出现转移膜,镀GLC薄膜的轴承磨损比镀DLC薄膜的轴承严重。结论 在乏油工况下,DLC薄膜具有更加优异的环境适应性。  相似文献   

14.
硫化物固体润滑涂层的研究现状   总被引:1,自引:0,他引:1  
硫化物(FeS、WS2和MoS2)是固体润滑材料中重要的一种材料,由于其呈六角形晶体层状结构,分子层间结合力较弱,界面分子层极易滑动形成良好润滑性能,因而备受研究者的关注。本文在综合大量文献资料的基础上,对硫化物固体润滑涂层特性、润滑机理及最新制备工艺研究现状进行综述,并对硫化物固体润滑涂层的研究前景进行展望。  相似文献   

15.
石墨-磷酸铝铬润滑涂层的制备及其摩擦学性能   总被引:1,自引:0,他引:1  
以磷酸H3PO4、氢氧化铝Al(OH)3和氧化铬CrO3为原料合成了磷酸铝铬胶黏剂(ACP),并制备了以该磷酸铝铬为胶黏剂,胶体石墨为固体润滑剂的粘结固体润滑涂层。研究了石墨与磷酸铝铬胶黏剂的质量比、磷酸铝铬胶黏剂中金属离子与磷酸根的比值、铬含量以及磷酸铝铬的合成温度对润滑涂层摩擦磨损性能的影响。结果表明:磷酸铝铬胶黏剂的耐温性能优良,以磷酸铝铬为胶黏剂的石墨固体润滑涂层具有优异的减摩抗磨性能;磷酸铝铬胶黏剂的组成、分子结构对固体润滑涂层的摩擦磨损性能有较大影响,其中当磷酸铝铬胶黏剂中金属离子与磷酸根的比值(M∶P)为1∶3,铬铝比(Cr∶Al)为1∶3,合成温度为100~110℃时,石墨-磷酸铝铬润滑涂层的摩擦磨损性能最好。  相似文献   

16.
类金刚石(DLC)薄膜是一种良好的固体润滑剂,能够有效延长机械零件、工具的使用寿命。DLC基纳米多层薄膜的设计是耐磨薄膜领域的一项研究热点,薄膜中不同组分层具备不同的物理化学性能组合,能从多个角度(如高温、硬度、润滑)进行设计来提升薄膜力学性能、摩擦学性能以及耐腐蚀性能等。综述了DLC多层薄膜的设计目的与研究进展,以金属/DLC基纳米多层膜、金属氮化物/DLC基纳米多层膜、金属硫化物/DLC基纳米多层膜以及其他DLC基纳米多层膜为主,对早期研究成果及现在的研究方向进行了概述。介绍了以上几种DLC基纳米多层膜的现有设计思路(形成纳米晶/非晶复合结构、软/硬交替沉积,诱导转移膜形成,实现非公度接触)。随后对摩擦机理进行了分析总结:1)层与层间形成特殊过渡层,提高了结合力;2)软/硬的多层交替设计,可以抵抗应力松弛和裂纹偏转;3)高接触应力和催化作用下诱导DLC中的sp3向sp2转化,形成高度有序的转移膜,从而实现非公度接触。最后对DLC基纳米多层膜的未来发展进行了展望。  相似文献   

17.
水性环氧粘结固体润滑剂,以水作为分散介质,具有价格低廉、无毒、不燃等优点,并且不含VOC,是一类有很好的发展前景的环保型润滑剂。制备了一种环保型的含MoS2、石墨和Sb2O3的性能优良的水性环氧粘结固体润滑剂,其具有优异的理化性能和摩擦学性能,尤其是在微动磨损的条件下,其摩擦学性能优于有机溶剂型粘结固体润滑涂层对比样品。环保的摩擦学性能优异的水性环氧粘结固体润滑剂的制备,为环保型润滑剂的发展提供了很好的依据。  相似文献   

18.
目的研究退火处理对DLC薄膜结构及摩擦学性能的影响,并讨论它们之间的相互关系。方法采用平板空心阴极等离子体增强化学气相沉积系统,以C2H2和Ar作为反应气源制备DLC薄膜,将DLC薄膜在大气环境中进行不同温度的退火处理。采用扫描电子显微镜、Raman光谱仪及金相显微镜、薄膜应力测试仪及球-盘摩擦实验仪等,对退火处理前后的DLC薄膜结构、应力及摩擦学性能等进行测试分析。结果在较低温度(?≤300℃)下退火,随退火温度的增加,薄膜中sp3-C的相对含量缓慢减少,结构没有发生明显的变化,内应力降低,薄膜的摩擦系数变化趋势相同,且随退火温度的增加,摩擦系数达到平稳的趋势发生得更早。在400℃退火温度下,DLC薄膜的结构发生了明显的改变,且表面发生了一定的氧化,初始摩擦系数较高,随摩擦时间的延长,薄膜的摩擦系数降低,同时稳定后的摩擦系数(~0.16)较低温退火的DLC薄膜高。在450℃退火温度下,DLC薄膜结构发生了明显的改变,并出现了严重的氧化,摩擦学性能严重恶化并迅速失效。结论退火温度的选择对DLC薄膜的结构及摩擦学性能具有重要影响。  相似文献   

19.
目的研究单掺Si和共掺Ag、Si对类金刚石薄膜的结构、摩擦学性能和耐腐蚀性能的影响。方法以高纯石墨靶、石墨与金属复合靶、Si靶作为靶材,采用射频增强磁控溅射技术制备不同掺杂种类的薄膜。通过XPS、拉曼光谱仪对薄膜的化学组成和结构进行分析,通过纳米压痕仪、摩擦磨损试验机、电化学工作站等,对薄膜的力学性能、摩擦学性能及耐腐蚀性能进行了系统研究。结果 Si元素单掺DLC会引起薄膜中sp~3C含量增加。Ag、Si共掺DLC后,由于Ag以金属相分布在薄膜中,并促进sp~2相的形成,导致sp~3C含量降低。掺杂元素后的DLC薄膜,硬度下降,但韧性提高,其中Ag、Si共掺的DLC薄膜的弹性恢复系数达到79%。此外,Ag、Si共掺DLC薄膜在多种气氛(Ar、O_2、N_2)中都具有优异的摩擦学性能,磨损寿命均超过30 min,其中在N_2气中的摩擦系数最低(0.1),并在NaCl溶液中的腐蚀电流密度比304不锈钢基体降低了近2个数量级,具有良好的耐腐蚀性。结论 Si与Ag共掺DLC薄膜较Si单掺薄膜具有更好的摩擦环境适应性和耐腐蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号