首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
为满足高速、高精度射频电路的要求,设计了一款新型带高温曲率补偿的低温漂、高电源抑制比的带隙基准电压源。为避免运放的失调电压对基准源精度产生影响,电路没有采用运放结构生成基准电压。利用双极型晶体管基极-发射极电压VBE的负温度特性,在高温时对基准电压进行曲率补偿,减小基准电压的温漂。电路基于180 nm BiCMOS工艺线,采用Cadence仿真验证。在-40~85℃温度范围内,5 V电源电压下,温度系数为5.7×10-6/℃,电源电压抑制比可达到-88 dB。  相似文献   

2.
设计了一种低温漂系数的共源共栅CMOS带隙基准源,采用自偏置共源共栅结构,提高了电路的电源抑制比,降低了电路的工作电源电压。采用不同温度下从输出支路抽取不同值电流的电路结构,在低温段抽取一个正温度系数电流,在高温段再注入一个较小值的正温度系数电流,达到降低温漂系数的目的。在0.5 μm CMOS工艺下,Cadence Spectre电路仿真的结果表明,温度特性得到了较大改善,在-35℃~125℃温度范围内,带隙基准源的温漂系数为1.5 ×10-6 /℃,电源抑制比为65 dB。  相似文献   

3.
张龙  冯全源  王丹 《微电子学》2015,45(2):221-224
基于OKI 0.5 μm BCD工艺,设计了一种带曲率补偿的低温漂带隙基准源。采用Brokaw带隙基准核心结构,引入一个高阶效应的电流,对基准进行补偿。结合基准核心电路产生的无温度系数电压,利用简单的电路实现基准电流源的产生。仿真结果表明,在4.5 V供电电压下,-40 ℃~150 ℃温度范围内,基准电压的波动范围为1.1755~1.17625 V,温漂为3.9 ×10-6/℃,基准电流为3.635 μA,输出基准电流波动仅为2.2 nA,精度较高,低频时电路电源抑制比为-76 dB。  相似文献   

4.
《电子与封装》2017,(3):22-25
在对传统带隙基准电压源进行理论分析的基础上,结合当前IC设计中对基准电压源低温漂、高电源抑制比的要求,设计了一种超低温漂的带隙基准电压源电路。该电路带有启动电路和高阶温度补偿电路。仿真结果表明,在-55~125℃的温度范围内获得了1.65×10-6/℃的温漂系数,低频时的电源抑制比达到-62 d B。  相似文献   

5.
李连辉  段吉海  张喜 《微电子学》2016,46(4):458-462
基于SMIC 0.18 μm CMOS工艺,设计了一种低温漂超低功耗的带隙基准电压源。采用无电阻电路结构,使基准电压源具有了超低功耗性能。基于分段线性电流模技术,引入滤波电容,极大地降低了温漂系数,稳定了输出电压。利用Cadence Spectre EDA软件,对电路进行设计和仿真。结果表明,在 -50℃~100 ℃温度范围内,温漂系数仅为2.9×10-6/℃。在0.99~3 V的电压范围内具有稳定的基准输出。在1 kHz频率下电源抑制比为 -71.28 dB。整个带隙基准源的功耗仅为185.9 nW。  相似文献   

6.
基于CSMC 0.5μm CMOS工艺,设计了一种带曲率补偿的低温漂带隙基准源。采用折叠式共源共栅放大器反馈结构带隙基准源,利用晶体管的VBE与IC的温度特性产生T1n T补偿量,对传统的带隙基准进行曲率补偿。仿真结果表明,在5 V供电电压下,-40~125℃温度范围内,基准电压的波动范围为1.2715~1.2720 V,温漂为3.0×10~(-6)/℃,低频时电路电源抑制比为-86 d B。  相似文献   

7.
支知渊  唐威  魏海龙  季赛健  尤路 《微电子学》2016,46(6):746-749, 753
设计了一种可修调的高精度、低温漂、高电源电压抑制比的高阶温度补偿带隙基准电压源。在Brokaw型带隙基准电路结构的基础上,采用多晶硅电阻负温度系数补偿技术,可实现2阶曲率温度补偿,减小了基准电压的温漂;设计了电阻修调网络,保证了基准电压的高精度。电路基于标准双极工艺进行设计和制造,测试结果表明:在-55 ℃~125 ℃温度范围内,15 V电源电压下,基准源输出电压为2.5(1±0.24%) V,温度系数为1.2×10-5/℃,低频时的电源电压抑制比为-102 dB,静态电流为1 mA,重载时输出电流能力为10 mA。  相似文献   

8.
基于SMIC 0.18 μm CMOS工艺,设计了一款低温漂高PSRR的带隙基准电压源。采用全新的曲率补偿电路架构,使输出基准电压源具有超低温漂系数。采用共源共栅电流镜带负反馈的结构,提高了核心电路的PSRR。利用Cadence Spectre EDA软件对电路进行设计和仿真,结果表明,在-40 ℃~100 ℃温度范围内,电路的温漂系数仅为1.8×10-6/℃,电压变化范围小于0.3 mV,在1.85~5 V的宽电压范围内均能正常工作,电源抑制比在低频时高达-111 dB,在1 kHz时也达到-98.07 dB,功耗仅为23.7 μW,非常适合于高性能系统集成应用。  相似文献   

9.
尹勇生  易昕  邓红辉 《微电子学》2017,47(6):774-778
根据带隙基准电压源工作原理,设计了一种带2阶温度补偿的负反馈箝位CMOS基准电压源。不同于带放大电路的带隙基准电压源,该基准电压源不会受到失调的影响,采用的负反馈箝位技术使电路输出更稳定。加入了高阶补偿电路,改善了带隙基准电压源的温漂特性。电路输出阻抗的增大有效提高了电源抑制比。基于0.18 μm CMOS 工艺,采用Cadence Spectre软件对该电路进行了仿真,电源电压为2 V,在-40 ℃~110 ℃温度范围内温度系数为4.199 ×10-6/℃,输出基准电压为1.308 V,低频下电源抑制比为78.66 dB,功耗为120 μW,总输出噪声为0.12 mV/Hz。  相似文献   

10.
设计了一种高阶曲率补偿低温漂系数的CMOS带隙基准电压源,采用自偏置共源共栅结构,降低了电路工作的电源电压。采用电流抽取电路结构,在高温阶段抽取与温度正相关电流,低温阶段抽取与温度负相关的电流,使得电压基准源在整个工作温度范围内有多个极值点,达到降低温漂系数的目的。在0.5μm CMOS工艺模型下,Cadence Spectre电路仿真的结果表明,在–40~+145℃范围内,温度特性得到了较大的改善,带隙基准电压源的温漂系数为7.28×10~(–7)/℃。当电源电压为2.4 V时电路就能正常工作。  相似文献   

11.
李沛林  杨建红 《现代电子技术》2010,33(16):202-204,210
采用Xfab0.35μmBiCMOS工艺设计了一种高电源抑制比(PSRR)、低温漂、输出0.5V的带隙基准源电路。该设计中,电路采用新型电流模带隙基准,解决了传统电流模带隙基准的第三简并态的问题,且实现了较低的基准电压;增加了修调电路,实现了基准电压的微调。利用Cadence软件对其进行仿真验证,其结果显示,当温度在-40~+120℃范围内变化时,输出基准电压的温度系数为15ppm/℃;电源电压在2~4V范围内变化时,基准电压摆动小于0.06mV;低频下具有-102.6dB的PSRR,40kHz前电源抑制比仍小于-100dB。  相似文献   

12.
设计了一种基于反馈电路的基准电压电路。通过正、负两路反馈使输出基准电压获得了高交流电源抑制比(PSRR),为后续电路提供了稳定的电压。采用NPN型三极管,有效消除了运放失调电压对带隙基准电压精度产生的影响,并对电路进行温度补偿,大大减小了温漂。整个电路采用0.35μm CMOS工艺实现,通过spectre仿真软件在室温27℃、工作电压为4 V的条件下进行仿真,带隙基准的输出电压为1.28 V,静态电流为2μA,在-20~80℃范围内其温度系数约为18.9×10-6/℃,交流PSRR约为-107 dB。  相似文献   

13.
吴蓉  张娅妮  荆丽 《半导体技术》2010,35(5):503-506
利用带隙电压基准的基本原理,结合自偏置共源共栅电流镜以及适当的启动电路,设计了一种新型基准电压源。获得了一个低温度系数、高电源抑制比的电压基准。通过对输出端添加运算放大器,把带隙基准电路产生的1.2 V电压提高到3.5 V,提高了芯片性能。用Cadence软件和CSMC的0.5μm CMOS工艺进行了仿真,结果表明,当温度在-20~+120℃,温度系数为9.3×10-6/℃,直流时的电源抑制比为-82 dB。该基准电压源能够满足开关电源管理芯片的使用要求,并取得了较好的效果。  相似文献   

14.
设计了一款低温度系数的自偏置CMOS带隙基准电压源电路,分析了输出基准电压与关键器件的温度依存关系,实现了低温度系数的电压输出。后端物理设计采用多指栅晶体管阵列结构进行对称式版图布局,以压缩版图面积。基于65 nm/3.3 V CMOS RF器件模型,在Cadence IC设计平台进行原理图和电路版图设计,并对输出参考电压的精度、温度系数、电源抑制比(PSRR)和功耗特性进行了仿真分析和对比。结果表明,在3.3 V电源和27℃室温条件下,输出基准电压的平均值为765.7 mV,功耗为0.75μW;在温度为-55~125℃时,温度系数为6.85×10~(-6)/℃。此外,输出基准电压受电源纹波的影响较小,1 kHz时的PSRR为-65.3 dB。  相似文献   

15.
一种新型无运放CMOS带隙基准电路   总被引:1,自引:0,他引:1  
冯树  王永禄  张跃龙 《微电子学》2012,42(3):336-339
介绍了带隙基准原理和常规的带隙基准电路,设计了一种新型无运放带隙基准电路。该电路利用MOS电流镜和负反馈箝位技术,避免了运放的使用,从而消除了运放带隙基准电路中运放的失调电压和电源抑制比等对基准源精度的影响。该新型电路比传统无运放带隙基准电路具有更高的精度和电源抑制比。基于0.18μm标准CMOS工艺,在Cadence Spectre环境下仿真。采用2.5V电源电压,在-40℃~125℃温度范围的温度系数为6.73×10-6/℃,电源抑制比为54.8dB,功耗仅有0.25mW。  相似文献   

16.
一种改进型BiCMOS带隙基准源的仿真设计   总被引:1,自引:1,他引:0  
依据带隙基准原理,设计了一种基于90 nm BiCMOS工艺的改进型带隙基准源电路.该电路设置运算跨导放大器以实现低压工作,用共源-共栅MOS管提高电路的电源抑制比,并加设了新颖的启动电路.HSPICE仿真结果表明,在低于1.1 V的电源电压下,所设计的电路能稳定地工作,输出稳定的基准电压约为610 mV;在电源电压V_(DD)为1.2 v、温度27℃、频率为10 kHz以下时,电源噪声抑制比约为-45 dB;当温度为-40~120℃时,电路的温度系数约为11 × 10~(-6)℃,因此该基准源具有低工作电压、高电源抑制比、低温度系数等性能优势.  相似文献   

17.
在传统带隙基准电压源电路结构的基础上,通过在运放中引入增益提高级,实现了一种用于音频Σ-ΔA/D转换器的CMOS带隙电压基准源。在一阶温度补偿下实现了较高的电源抑制比(PSRR)和较低的温度系数。该电路采用SIMC 0.18-μm CMOS工艺实现。利用Cadence/Spectre仿真器进行仿真,结果表明,在1.8 V电源电压下,-40~125℃范围内,温度系数为9.699 ppm/℃;在27℃下,10 Hz时电源抑制比为90.2 dB,20 kHz时为74.97 dB。  相似文献   

18.
提出了一种低电压、低功耗、中等精度的带隙基准源,针对电阻分流结构带隙基准源在低电源电压下应用的不足作出了一定的改进,整体电路结构简单且便于调整,同时尽可能地减少了功耗.该电路采用UMC 0.18 μm Mixed Mode 1.8 V CMOS工艺实现.测试结果表明,电路在1 V电源电压下,在-20~30℃的温度范围内,基准电压的温度系数为20×10-6/℃,低频时的电源电压抑制比为-54 dB,1 V电源电压下电路总功耗仅为3μW.  相似文献   

19.
孙大开  李斌桥  徐江涛  李晓晨 《微电子学》2012,42(4):531-533,550
描述了一个具有高电源抑制比和低温度系数的带隙基准电压源电路。基于1阶零温度系数点可调节的结构,通过对不同零温度系数点带隙电压的转换实现低温度系数,并采用了电源波动抑制电路。采用SMIC 0.18μm CMOS工艺,经过Cadence Spectre仿真验证,在-20℃~100℃温度范围内,电压变化范围小于0.5mV,温度系数不超过7×10-6/℃。低频下的电源抑制比为-107dB,在10kHz下,电源抑制比可达到-90dB。整个电路在供电电压大于2.3V时可以实现正常启动,在3.3V电源供电下,电路的功耗约为1.05mW。  相似文献   

20.
采用ASMC0.35μm CMOS工艺设计了低功耗、高电源抑制比(PSRR)、低温漂、输出1V的带隙基准源电路。该设计中,偏置电压采用级联自偏置结构,运放的输出作为驱动的同时也作为自身电流源的驱动,实现了与绝对温度成正比(PTAT)温度补偿。通过对其进行仿真验证,当温度在-40~125℃和电源电压在1.6~5V时,输出基准电压具有3.68×10-6/℃的温度系数,Vref摆动小于0.094mV;在低频时具有-114.6dB的PSRR,其中在1kHz时为-109.3dB,在10kHz时为-90.72dB。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号