首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A finite-element model was developed using ABAQUS software package to investigate the effect of placing geosynthetic reinforcement within the base course layer on the response of a flexible pavement structure. A critical state two-surface constitutive model was first modified to represent the behavior of base course materials under the unsaturated field conditions. The modified model was then implemented into ABAQUS through a user defined subroutine, UMAT. The implemented model was validated using the results of laboratory triaxial tests. Finite-element analyses were then conducted on different unreinforced and geosynthetic reinforced flexible pavement sections. The results of this study demonstrated the ability of the modified critical state two-surface constitutive model to predict, with good accuracy, the response of the considered base course material at its optimum field conditions when subjected to cyclic as well as static loads. The results of the finite-element analyses showed that the geosynthetic reinforcement reduced the lateral strains within the base course and subgrade layers. Furthermore, the inclusion of the geosynthetic layer resulted in a significant reduction in the vertical and shear strains at the top of the subgrade layer. The improvement of the geosynthetic layer was found to be more pronounced in the development of the plastic strains rather than the resilient strains. The reinforcement benefits were enhanced as its elastic modulus increased.  相似文献   

2.
Rutting, due to permanent deformations of unbound materials, is one of the principal damage modes of low traffic pavements. Flexible pavement design methods remain empirical; they do not take into account the inelastic behavior of pavement materials and do not predict the rutting under cyclic loading. A finite-element program, based on the concept of the shakedown theory developed by Zarka for metallic structures under cyclic loadings, has been used to estimate the permanent deformations of unbound granular materials subjected to traffic loading. Based on repeated load triaxial tests, a general procedure has been developed for the determination of the material parameters of the constitutive model. Finally, the results of a finite-element modeling of the long-term behavior of a flexible pavement with the simplified method are presented and compared to the results of a full-scale flexible pavement experiment performed by Laboratoire Central des Ponts et Chaussées. Finally, the calculation of the rut depth evolution with time is carried out.  相似文献   

3.
Rutting has an adverse effect on safety and riding comfort of pavement. Reliable prevention and prediction of rutting has been one of the major focuses in road research. This paper summarizes the methods available for rut depth prediction and performs a case study in two separate ways based on the data acquired from a full-scale indoor circular road test. One was to formulate the possible rut depth by integrating a four-element-five-parameter viscoelastic model and the layered strain approach. The other was based on an empirical method. It is verified that both methods are applicable in predicting rut depth within the near future after open to traffic. The empirical method, however, is also capable of predicting rut depth within the whole design life. And theoretical method proves inadequate because of the limitation of the model itself and also of the method for obtaining parameters.  相似文献   

4.
A forensic study was conducted to identify the cause of the premature cracking on three recently completed projects that were built with the same design. Nondestructive [ground penetration radar, falling weight deflectometer (FWD), GeoGauge, and Portable FWD], nuclear density gauge, dynamic cone penetration, and extensive laboratory tests were performed. It was found that the initial stiffness of the treated base was found to be excessively high by FWD backcalculation. Some sections of the backcalculated base moduli were over 20.7?GPa. This indicates that the layer is excessively brittle for a base material, similar to lean concrete. Six specimens (that were made without a mellowing period) exhibited cracks. There was no cracking for six specimens that had two days of mellowing. It was concluded that the culprit of the transverse cracking in the main lanes was the shrinkage of lime treated base layers. The longitudinal cracks are related to the edge drying and the transverse cracks are related to the insufficient mellowing period. Based on the findings of this study, the District implemented a 2-day mellowing period for Quicklime treated caliche base. Three newly constructed pavements (age 8, 5, and 2?months) were surveyed. No cracking can be observed so far, and the District thinks the cracking problem has been mitigated by the 2-day mellowing period. Without the mellowing period, cracking had normally occurred 1?to?2?months after construction..  相似文献   

5.
The use of the measured complex permittivity of electrolyte solutions for predicting ionic species and concentration is investigated. Four artificial neural networks (ANNs) are created using a database containing permittivities (at 1.0, 1.5, and 2.0 GHz) and loss factors (at 0.3, 1.5, and 3.0 GHz) of 12 aqueous salts at various concentrations. The first ANN correctly identifies cationic species in 83% of the samples and distinguishes between pure water and electrolyte solutions with 100% accuracy. The second ANN predicts cationic concentrations with a RMS error of 190 mg/L for the range of concentrations examined (0–3,910 mg/L) and explains 90% of the variability in these data. The third ANN correctly identifies 98% of the anionic species in samples and accurately distinguishes between pure water and anion-containing solutions. The last ANN predicts anionic concentrations with a RMS error of 164 mg/L for the range of concentrations examined (0–5,654 mg/L) with an r2 of nearly 98%.  相似文献   

6.
The influence of three loading paths on the collapse of loose sand is analyzed with a particular attention paid to the onset of collapse and the mode of failure exhibited. Experimental results on conventional undrained triaxial compression tests, constant shear drained tests, as well as quasi-constant shear undrained path are presented, compared, and analyzed. It is now recognized that some collapses can occur before the Mohr-Coulomb plastic limit criterion is reached, and our recent results obtained with the new arrangement built up highlight that these collapses occur under a diffuse mode of failure. An extensive experimental series of tests shows that the first negative value of the second-order work computed using experimental data corresponds to the loss of controllability. Moreover, it is shown that the stress ratios at collapse and the corresponding mobilized angles of friction are very close for all types of tests. For similar void ratios, the onset of collapse is thus largely independent of the loading path under drained and undrained conditions but depends on a stress state to bring the material inside the unstable domain and also on the current direction of the stress increment. Indeed, it appears that the orientations of the stress increments at collapse for all tests are the same, what explains, according to the second-order work criterion, that collapse occurs at the same stress ratio. A potentially unstable domain, depending on the stress increment direction, can thus be defined.  相似文献   

7.
During recent decades, a considerable amount of research has been devoted to the resilient properties of unbound road materials. However, the severe effects of cold region climates on resilient behavior have been less exhaustibly investigated. In this study, the results from extensive resilient modulus laboratory tests during full freeze-thaw cycling are presented. Various coarse and fine-grained subgrade soils were tested at selected temperatures from room temperature down to ?10°C and back to room temperature. The soils are frozen and thawed inside a triaxial cell, thus eliminating external disturbances due to handling. The results indicate that all the soils exhibited a substantially reduced resilient modulus after the freeze-thaw cycle. A significant hysteresis for the clay soil in warming and cooling was also observed. This paper presents equations for different conditions. The equations may be used for selecting the appropriate resilient modulus value in current and future evaluation and design methods.  相似文献   

8.
A constitutive model based on hyperelasticity is proposed to capture the resilient (elastic) behavior of granular materials. Resilient behavior is a widely accepted idealization of the response of unbound granular layers of pavements, following shakedown. The coupling property of the proposed model accounts for shear dilatancy and pressure-dependent behavior of the granular materials. The model is calibrated using triaxial resilient test data obtained from the literature. A statistical comparison is made between the predictions of the proposed model and a few of the prominent models of resilient response. The proposed coupled hyperelastic model yields a significantly better fit to the experimental data. It also offers a computational efficiency when implemented in a classical nonlinear finite elemental framework.  相似文献   

9.
It is well established that critical state soil mechanics provides a useful theoretical framework for constitutive modeling of soil. Most of the critical state models, including the popular modified Cam clay (MCC) model, predict soil behavior in the subcritical region fairly well. However, the predictions for heavily overconsolidated soils, in the supercritical region, are not so satisfactory. Furthermore, the critical state models were developed from triaxial test data and extension of these models into three-dimensional (3D) stress space has not been investigated thoroughly. In the present work, experiments were carried out to obtain stress–strain behavior of overconsolidated soil in triaxial compression, extension, and plane strain conditions. A novel biaxial device has been developed to conduct the plane strain tests. The experimental results were used to formulate Hvorslev–MCC model which has MCC features in the subcritical region and Hvorslev surface in the supercritical region. The model was generalized to 3D stress space using the Mohr–Coulomb failure criterion. A comparison of the model predictions with test results has indicated that the Hvorslev–MCC model performs fairly well up to the peak supercritical point, during which deformations are fairly uniform and the specimens remain reasonably intact. Limitations of this simple model in predicting postpeak localization are also discussed. The model’s predictions for volumetric response in different shear modes seem to agree reasonably well with test results.  相似文献   

10.
Fiber-reinforced polymer (FRP) retrofit systems for concrete structural members such as beams, columns, slabs, and bridge decks have become increasingly popular as a result of extensive studies on short-term debonding behavior. Nevertheless, long-term performance and durability issues regarding debonding behavior in such strengthening systems still remain largely uncertain and unanswered. Because of its composite nature, the effectiveness of the strengthening system depends on the properties of the interfaces between the three constituent materials; namely, concrete, epoxy, and FRP. Certain factors, including those related to environmental exposures, can cause degradation of the interface properties during service life. This is particularly critical when predicting service life and planning maintenance of FRP-strengthened concrete structures. In this study, effect of moisture on an FRP-concrete bond system is characterized by means of the tri-layer fracture toughness, which can be obtained experimentally from peel and shear fracture tests. Fracture specimens were conditioned under various durations and numbers of wet-dry cycles at room temperature and 50°C. An irreversible weakening in bond strength was observed in fracture specimens under moisture cyclic condition. A conceptual model is developed based on the experimental results of the fracture specimens under variable cyclic moisture conditions for the bond strength prediction of the FRP-concrete bond system. A numerical study of a precracked FRP-strengthened reinforced concrete beam is then performed to show potential application of the proposed predictive model.  相似文献   

11.
A constitutive model has been developed to capture the behavior of cross-anisotropic frictional materials. The elastoplastic, single hardening model for isotropic materials serves as the basic framework. Based on the experimental results of cross-anisotropic sands in isotropic compression tests, the principal stress coordinate system is rotated such that the model operates isotropically within the rotated framework. Experimental plastic work contours on the octahedral plane are plotted for a series of true triaxial tests on dense Santa Monica Beach sand to study the effects of cross anisotropy on the evolution of yield surfaces. The amount of rotation of the yield and plastic potential surfaces decreases to zero (isotropic state) with loading. The model is constructed for cases where the principal stress and material symmetry axes are collinear and no significant rotation of principal stresses occur. The model incorporates fourteen parameters that can be determined from simple experiments, such as isotropic compression, drained triaxial compression, and triaxial extension tests. A series of true triaxial and isotropic compression tests on dense Santa Monica Beach sand are used as a basis for verification of the capabilities of the proposed model.  相似文献   

12.
Time Effects Relate to Crushing in Sand   总被引:2,自引:0,他引:2  
Based on previously obtained experimental results, a mechanistic picture of time effects in granular materials is presented. Accordingly, time effects are caused by grain crushing, which in turn is time dependent, as indicated by static fatigue of brittle materials. Triaxial compression tests have been performed on Virginia Beach sand at high pressures, where grain crushing is prevalent, to study effects of initial loading strain rates on subsequent amounts of creep and stress relaxation. Grain size distribution curves were determined after each test and the amount of crushing, as characterized by Hardin’s breakage factor, is related to the energy input to the triaxial specimens. A pattern emerges that indicates the importance of crushing for the axial and volumetric strains, while rearrangement and frictional sliding between intact grains play much smaller roles in the stress-strain and volume change behaviors of granular materials at high stresses and shear strains. Because particle crushing is a time-dependent phenomenon described as static fatigue or delayed fracture, the close relation between time effects and crushing in granular materials is established.  相似文献   

13.
The limit state characteristics of base-course granular materials were obtained using a typical triaxial testing equipment devoted to the measurement of resilient modulus. Accurate monitoring of axial strain during isotropic and anisotropic compression was used to determine the stress conditions where significant irrecoverable strains occur for samples prepared by static compression, Proctor rammer, and vibratory compaction. The limit state curve is highly anisotropic, centered about the q/p = 1 line. It is sensitive to sample preparation technique and fines content. The Strategic Highway Research Program (SHRP) procedure corresponds to stress paths during conditioning and repeated loading that remain within the limit state curve of the control base course material containing 3.5% fines. The resilient modulus values reflect henceforth the behaviour of the same material with its original particle contact distribution. The Laboratoires des Ponts et Chaussées (LCPC) procedure is characterized by stress paths that cross the original limit state curve of the Proctor compacted samples. Particle contact distribution changes thus continuously as the limit state curve expands in response to the various stress paths used in this procedure. The resilient modulus values correspond to samples with different fabrics. A simple procedure based on isotropic loading has been proposed for the determination of a simplified limit state curve of base course materials with the intent of specifying the testing conditions for obtaining adequate resilient modulus values.  相似文献   

14.
Developed in the early 1990s, ultrathin whitetopping (UTW) is a relatively new technique for asphalt pavement rehabilitation. To evaluate the applicability of UTW pavement in Florida, in 1997, the Florida Department of Transportation (FDOT) constructed an experimental UTW pavement in a weigh station along I-10, located in north Florida. The performance of these test sections, however, was less than ideal, with the observation of some early cracking on the concrete surface, which developed into severe cracking with time. Therefore, a forensic investigation was conducted to determine the causes of the problems in these UTW sections, so that lessons could be learned from this experimental project, the use of UTW under Florida’s conditions could be adequately assessed, and UTW technology could be properly applied in the future. The scope of work consisted of field evaluation, laboratory testing, and pavement design evaluation. Field evaluation included a pavement condition survey, pavement temperature measurement, nondestructive load testing using a falling weight deflectometer, and slab thickness determination. Laboratory tests were performed to determine concrete and asphalt material properties. Other design and traffic data were also acquired from FDOT. Data collected from the field evaluation and laboratory testing were used in conjunction with a mechanistic UTW pavement design/evaluation procedure to determine the possible causes for premature failure. From this comprehensive evaluation, the primary cause for the failure was found to be inadequate UTW pavement design. The inadequacy of the combination of thickness and slab dimensions contributed to the early cracking of the UTW pavement.  相似文献   

15.
This paper presents the Cantabrian portable infiltrometer (CP infiltrometer), a specially designed device based on rainfall simulation for the assessment of the infiltration capacity of all types of urban pavements. Several pervious and impervious surfaces were tested with the LCS permeameter, an existing infiltration test based on the use of a column of water, and the CP Infiltrometer, simulating rain intensities with return periods of 10, 50, and 500 years and 5?min duration. The discussion of the results indicates that the CP infiltrometer could be used successfully to identify different levels of infiltration capacity and to assess the correct performance of pervious surfaces on which design, construction, and maintenance decisions are based.  相似文献   

16.
Stress relaxation and stress drop-relaxation tests have been performed to complement a test series performed to study strain rate, creep, and stress drop-creep effects on crushed coral sand. Drained experiments with constant effective confining pressure of 200 kPa were performed in which triaxial specimens of crushed coral sand were loaded to initial stress differences of 500, 700, and 900 kPa, followed by stress drops of 0, 100, 200, 300, and 400 kPa at which points the axial strains were kept constant while the axial stress relaxation and the volumetric strains were observed. The stress drops produced delays in initiation of stress relaxation that were proportional with the magnitudes of the stress drops. The experiments show that sands do not exhibit classic viscous effects, and their behavior is indicated as “nonisotach,” while the typical viscous behavior of clay is termed “isotach.” Thus, there are significant differences in the time-dependent behavior patterns of sands and clay. A mechanistic picture of time effects in sands is proposed.  相似文献   

17.
Permanent deformation is one of the major distresses in asphalt pavements. It is caused mainly by high traffic loads associated with high field temperatures. An anisotropic viscoplastic continuum damage model is developed in this study to describe permanent deformation of asphalt pavements. The model is based on Perzyna’s formulation with Drucker–Prager yield function modified to account for material anisotropy and microstructure damage. The material anisotropy is captured through microstructural analysis of aggregate distribution on two-dimensional sections of hot mix asphalt. A damage parameter is included in the model to quantify the nucleation of cracks and growth of air voids and cracks. A parametric study was conducted to demonstrate the sensitivity of the model to strain rate, aggregate distribution, and microstructure damage. Triaxial strength and static creep measurements obtained from the Federal Highway Administration Accelerated Loading Facility were used to determine the model parameters.  相似文献   

18.
The constitutive modeling of cyclic plasticity of soils has made great progress, especially in the area of sands liquefaction modeling. Nowadays, the problem of rutting of flexible pavements linked to permanent deformations occurring in the unbound layers is taken into account only by empirical formulas. This paper presents an elastoplastic model with both isotropic and kinematic hardening. The yield surface, plastic potential, and isotropic hardening are based on a model for sands, which takes into account the influence of the initial void ratio and of the mean stress on the mechanical behavior. A kinematic hardening has been added in order to take into account the mechanical behavior of the material for large cycle numbers. A complete model is then developed, simulations are presented, and comparisons with repeated load triaxial tests carried out on a subgrade soil (clayey sand), have been made. These comparisons underline the capabilities of the model to take into account the monotonic, cyclic, and ratchetting behavior of unbound materials for roads.  相似文献   

19.
This paper compares the performance of three different decision-tree-based methods of assigning attribute weights to be used in a case-based reasoning (CBR) prediction model. The generation of the attribute weights is performed by considering the presence, absence, and the positions of the attributes in the decision tree. This process and the development of the CBR simulation model are described in the paper. The model was tested by using data pertaining to the early design parameters and unit cost of the structural system of residential building projects. The CBR results indicate that the attribute weights generated by taking into account the information gain of all the attributes performed better than the attribute weights generated by considering only the appearance of attributes in the tree. The study is of benefit primarily to researchers, as it compares the impact of attribute weights generated by three different methods and, hence, highlights the fact that the prediction rate of models such as CBR largely depends on the data associated with the parameters used in the model.  相似文献   

20.
Mechanistic-empirical pavement design guide for flexible pavements as per the AASHTO design guide requires characterization of subgrade soils using the resilient modulus (MR) property. This property, however, does not fully account for the plastic or permanent strain or rutting of subgrade soils, which often distress the overlying pavements. Soils such as silts exhibit moderate to high resilient moduli properties but they still undergo large permanent deformations under repeated loading. This explains the fallacy in the current pavement material characterization practice. A comprehensive research study was performed to measure permanent deformation properties of subgrade soils by subjecting various soils under repeated cycles of deviatoric loads. This paper describes test procedure followed and results obtained on three soils including clay, silt, and sandy soils. The influence of compaction moisture content, confining pressure, and deviatoric stresses applied on the measured permanent deformations of all three soils are addressed. A four-parameter permanent strain model formulation as a function of stress states in soils and the number of loading cycles was used to model and analyze the present test results. The model constants of all three soils were first determined and these results were used to explain the effects of various soil properties on permanent deformations of soils. Validation studies were performed to address the adequacy of the formulated model to predict rutting or permanent strains in soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号