首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents the results of nondestructive integrity tests (NDTs) and axial static load tests on drilled shafts constructed in varved clay at the National Geotechnical Experimentation Site in Amherst, Mass. The shafts were constructed with built-in defects to study: (1) the effectiveness of conventional NDT methods in detecting construction defects and (2) the effect of defects on the capacity of drilled shafts. Defects included voids and soil inclusions occupying 5–45% of the cross section as well as a soft bottom. Nine organizations participated in a blind defect prediction symposium, using a variety of NDT techniques. Most participants located defects that were larger than 10% of the cross sectional area. However, false positives and inability to locate smaller defects and multiple defects in the same shaft were encountered. Static load tests indicated that (1) minor defects had little or no effect on skin friction; (2) a soft bottom resulted in a 33% reduction in end bearing relative to a sound bottom; and (3) reloading resulted in a 20–30% reduction in the geotechnical capacity.  相似文献   

2.
Lateral loads are often the primary forces that act on drilled shafts when they support retaining walls, bridge piers, or building foundations. The construction of drilled shafts often inadvertently introduces flaws that are not always detectable with well-performed nondestructive evaluation (NDE) techniques. The effect of such undetectable minor flaws on the lateral-load performance of drilled shafts needs to be assessed and subsequently considered in the design. This paper summarizes a field study that consisted of NDE of six, full-scale drilled shafts with preinstalled voids and lateral-load tests that were performed on the six test shafts. Results from the field study indicated that undetectable (by NDE) void flaws occupying areas of up to 15% of the cross-sectional area of the drilled shaft could reduce free-head shear capacity up to 16%. A subsequent numerical analysis was performed to filter out all variables, other than void flaws, that could affect the lateral-load deformation of drilled shafts. Numerical analysis results validated the field tests measurements. A parametric study of variables affecting the load-deformation behavior of drilled shafts suggests that a reduction in moment capacity of up to 27% is possible with undetected voids present in the shafts that were tested.  相似文献   

3.
The abutments of integral bridges are traditionally supported on a single row of steel-H-piles that are flexible and that are able to accommodate lateral deflections well. In Hawaii, steel-H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel-H-piles in scour-susceptible soils has led to a preference for the use of drilled shaft foundations. A drilled shaft-supported integral abutment bridge was monitored from foundation installation to in-service behavior. Strain gauge data indicate that drilled shaft foundations worked well for this integral bridge. After 45 months, the drilled shafts appear to remain uncracked. However, inclinometer readings provide a conflicting viewpoint. Full passive earth pressures never developed behind the abutments as a result of temperature loading because thermal movements were small and the long term movements were dominated by concrete creep and shrinkage of the superstructure that pulled the abutments towards the stream. In the stream, hydrodynamic loading during the wet season had a greater effect on the abutment movements than seasonal temperature cycling. After becoming integral, the upright members of the longitudinal bridge frame were not vertical because the excavation and backfilling process caused deep seated movements of the underlying clay resulting in the drilled shafts bellying out towards the stream. This indicates the importance and need for staged construction analysis in design of integral bridges in highly plastic clays. Also, the drilled shaft axial loads from strain gauges are larger than expected.  相似文献   

4.
Although pressure grouting beneath the tips of drilled shafts had been used successfully worldwide for close to 4?decades, it has remained relatively unused in the United States in part due to the absence of a rational design procedure. Previous international usage relied predominantly upon experience and unpublished proprietary approaches. More recently, research aimed at quantifying the improvement that could be derived from postgrouting drilled shaft tips has resulted in a design methodology. This paper briefly discusses the postgrouting process and outlines the full scale test programs used to identify parameters affecting postgrouting performance. Correlations developed between applied grout pressure and end bearing improvement are presented along with a numerical example illustrating the design procedure.  相似文献   

5.
Rock socketed drilled shafts are being used increasingly to support heavily loaded structures. Rock sockets provide resistance to the load through a combination of side and base resistances. In this study, the effect of drilling tools such as an auger and a core barrel on the unit side resistance was investigated. A total of four field studies were performed on clay shale (compressive strength of 1–2?MPa) and limestone (compressive strength of 10?MPa). Borehole roughnesses produced by the different types of drilling tools in clay shale and limestone were measured using a laser borehole roughness profiler developed in this study to measure roughness to 0.5?mm in the boreholes. Based on the results of this study, it was observed that the drilling tools developed different socket roughnesses, which in turn affected the side resistances of the rock socketed drilled shafts.  相似文献   

6.
The load-settlement behavior of rock-socketed drilled shafts under axial loading is investigated by a load-transfer approach. Special attention is given to the shear load-transfer function and an analytical method for estimating load-transfer characteristics of rock-socketed drilled shafts. A nonlinear triple curve is employed to determine the shear load-transfer function of rock-socketed drilled shafts based on the constant normal stiffness direct shear tests and the Hoek-Brown failure criterion. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin’s point load solution. Through comparisons with field case studies, it is found that the proposed methodology in the present study is in good agreement with the general trend observed by in situ measurements and, thus, represents a significant improvement in the prediction of drilled shaft shear behavior.  相似文献   

7.
This paper presents a single case history of a drilled shaft constructed in the Atlantic Coastal Plain deposits for a bridge foundation that was subjected to axial loading. The predicted nominal axial capacity is estimated based on state of practice empirically derived methods specified in the current AASHTO LRFD Bridge Design Specifications. Predictions are compared to observed soil resistance derived from a static load test conducted on a full-size instrumented test shaft using the Osterberg Cell method. The results suggest that the AASHTO specified prediction methods should be applied cautiously for drilled shafts in the Atlantic Coastal Plain, incorporating an appropriate in situ testing program for evaluating soil design parameters, considering variations from the specific geologic environment and construction methodology used to develop the specified prediction methods, accounting for the load-deformation behavior of the shaft, and providing for instrumented static load testing to measure the actual behavior of the drilled shafts.  相似文献   

8.
Shear Load Transfer Characteristics of Drilled Shafts in Weathered Rocks   总被引:1,自引:0,他引:1  
The load distribution and deformation of drilled shafts subjected to axial loads were evaluated by a load-transfer approach. The emphasis was on quantifying the load-transfer mechanism at the interface between the shafts and surrounding highly weathered rocks based on a numerical analysis and on small-scale tension load tests performed on nine instrumented piles. An analytical method that takes into account the soil coupling effect was developed using a modified Mindlin's point load solution. Based on the analysis, a single-modified hyperbolic model is proposed for the shear transfer function of drilled shafts in highly weathered rocks. Through comparisons with field case studies, it is found that the prediction by the present approach is in good agreement with the general trend observed by in situ measurements, and thus represents a significant improvement in the prediction of load deflections of drilled shafts.  相似文献   

9.
Field load tests of three drilled shafts socketed in Burlington limestone were conducted using the Osterberg load cell. The objective of the testing was to compare the load capacities obtained from the field load tests with load capacities predicted using empirical methods. Based on the results of this study, the following conclusions can be drawn. The observed values of unit side resistance exceeded predicted empirical values for two of the three shafts tested (2,343 and 2,278 kPa observed versus 1,550 and 1,252 kPa predicted). However, for one of the shafts, the observed value of unit side resistance was only about ? of the more conservative predicted empirical value (916 kPa observed versus 1,252 predicted). Bearing capacity failure did not occur for two of the three shafts. Bearing capacity failure may have occurred for one of the shafts. Using a factor of safety of 3 applied to the lowest observed value of end bearing pressure implies that the allowable bearing capacity for the Burlington limestone at this site (3 MPa, or ?500 psi) exceeds the typical presumptive bearing capacity for sound limestone in mid-Missouri (1914 kPa or 277 psi).  相似文献   

10.
The majority of integral abutment bridges (IABs) in the United States are supported on steel H-piles to provide the flexibility necessary to minimize the attraction of large lateral loads to the foundation and abutment. In Hawaii, steel H-piles have to be imported, corrosion tends to be severe in the middle of the Pacific Ocean, and the low buckling capacity of steel H-piles in scour-susceptible soils has led to a preference for the use of concrete deep foundations. A drilled shaft-supported IAB was instrumented to study its behavior during and after construction over a 45-month period. This same IAB was studied using the finite-element method (FEM) in both two- (2D) and three dimensional (3D). The 3D FEM yields larger overall pile curvature and moments than 2D because in 3D, the high plasticity soil is able to displace in between the drilled shafts thereby “dragging” the shafts to a more highly curved profile while soil flow is restricted by plane strain beam elements in 2D. Measured drilled shaft axial loads were higher than the FEM values mainly due to differences between the assumed and actual axial stiffness and to a lesser extent on concrete creep in the drilled shafts and uneven distribution of loads among drilled shafts. Numerical simulations of thermal and stream loadings were also performed on this IAB.  相似文献   

11.
Drilled shafts socketed in rock mass have been used frequently as a foundation system to support both vertical and lateral loads. Traditionally, the lateral interaction between the drilled shaft and the surrounding rock medium has been characterized by means of nonlinear p-y curves; however, there is a lack of well verified p-y criterion for rock mass. In this paper, a hyperbolic p-y criterion is developed based on both theoretical derivations and numerical (finite element) parametric analysis results. The methods for determining pertinent rock parameters needed for constructing the proposed p-y curves are presented in the paper. Two full-scale lateral load tests on large diameter, fully instrumented drilled shafts socketed in rock conducted by the writers, together with additional four load test results reported by Gabr et al. were used to validate the applicability of the proposed hyperbolic p-y curves for rock mass. The comparisons between the computed shaft responses (both deflections and bending moments) and the actual measured responses are considered acceptable.  相似文献   

12.
采用西澳大学室内鼓轮式离心机,在预先固结的高岭黏土中开展不同离心力场(50g,125g及250g,g为重力加速度)条件下的模型压桩试验、T-bar试验和静力触探试验,分析了模型桩在贯入过程、静置稳定过程中桩身径向应力(σr)的变化规律,并对后期桩体拉伸载荷阶段的径向应力变化值(Δσr)及桩侧摩阻力变化情况行了探讨,揭示了在不同超固结比(OCRs)黏土中静压桩侧摩阻力的演变特性.在此基础上,通过两种经验公式方法对桩侧摩承载力进行了预测计算和对比分析.研究结果表明:沉桩过程中桩端相对高度(h/B)对桩身径向应力的发展变化有很大的影响,桩身不同位置(h/B)的总径向应力对同一贯入深度而言,存在桩侧径向应力退化现象;基于静力触探试验提出的经验方法,能有效考虑静力触探锥端阻力(qt)和桩端相对高度(h/B)因素的影响,将其应用于黏土沉桩时桩侧摩阻力的预测,可取得与试验实测结果较吻合的结果.研究成果对软土地区静压桩施工与承载力设计具有一定的工程指导意义.   相似文献   

13.
The uniaxial vertical bearing capacity of square and rectangular footings resting on homogeneous undrained clay is investigated with finite element analyses, using both Tresca and von Mises soil models. Results are compared with predictions from conventional bearing capacity theory and available analytical and numerical solutions. By calibrating the finite element results against known exact solutions, best estimates of bearing capacity for rough-based rectangular footings are derived, with the shape factor fitted by a simple quadratic function of the footing aspect ratio. For a square footing, the bearing capacity is approximately 5% lower than that based on Skempton’s shape factor of 1.2.  相似文献   

14.
This paper is a critical evaluation of the interpretation criteria of drilled shafts under axial compression loading. A wide variety of load test data are used for analysis, and these data are divided into drained and undrained databases. The interpretation criteria are examined from these load test results to establish a consistent compression interpretation criterion. Among these criteria, the range of each interpretation method presents approximately the same trend for both drained and undrained conditions. The statistical results show that the smaller the compression displacement, the higher the coefficient of variation. Moreover, the undrained load test results reveal less variability than the drained results. The load-displacement curve of a drained loading also demonstrates more ductility than that for undrained loading. Based on these analyses, the relative merits and interrelationships of these criteria are established, and specific design recommendations for the interpretation of compression drilled shaft load test, in terms of both capacity and displacement, are given.  相似文献   

15.
The impulse response test is a nondestructive evaluation technique commonly used for quality control of driven concrete piles and drilled shafts where the pile heads are accessible. When evaluating existing foundations, the presence of a pile cap or other structure makes the pile heads inaccessible and introduces uncertainties in the interpretation of impulse response results. A test section was constructed at the National Geotechnical Experimentation Site (NGES) at Northwestern University to examine the applicability of nondestructive testing methods in evaluating deep foundations under inaccessible-head conditions. This paper focuses on the results of impulse response tests conducted atop the three pile caps at the NGES. Based on field experimentation and numerical simulations, a frequency was determined below which the impulse response test could be used for inaccessible-head conditions. This cutoff frequency primarily depends upon the geometry of the pile cap and pile. A case study is presented that describes impulse response tests obtained on a number of drilled shafts both after the shaft was constructed and after grade beams and walls were built. The results of these tests also follow the trends observed in the NGES tests related to cutoff frequency.  相似文献   

16.
A program of field loading tests was conducted to measure the axial response of drilled foundations constructed using a variety of different drilling techniques. The research was performed at the Auburn University National Geotechnical Experimentation Site at Spring Villa, Ala. in Piedmont geology composed of silty soils formed by weathering of parent metamorphic rocks. A total of ten drilled shafts (0.9 m diameter by 11 m deep) were constructed using techniques including dry construction with casing advanced ahead of the hole and with drilling slurry composed of polymer fluids and mineral (bentonite) fluids. The results demonstrate the great potential influence that differing construction techniques may have on the load transfer in side shear of drilled foundations. The mineral slurry resulted in significantly lower side shear relative to the other techniques.  相似文献   

17.
In this paper, a nonlinear continuum method is developed to predict the load-displacement response of drilled shafts under lateral loading. The method can consider drilled shafts in a continuum consisting of a soil layer overlying a rock mass layer. The deformation modulus of the soil is assumed to vary linearly with depth, and the deformation modulus of the rock mass is assumed to vary linearly with depth and then to stay constant below the shaft tip. The effect of soil and∕or rock mass yielding on the behavior of shafts is considered by assuming that the soil and∕or rock mass behaves linearly elastically at small strain levels and yields when the soil and∕or rock mass reaction force p (force∕length) exceeds the ultimate resistance pult (force∕length). For the calculation of the ultimate resistance pult of the soil, methods that are available in the literature are used. To calculate the ultimate resistance pult of the rock mass, a method based on the Hoek-Brown strength criterion is proposed. The proposed method is verified by comparing its results with available elastic solutions and field test data, and it is finally applied in the design of a bridge foundation in Massachusetts.  相似文献   

18.
More than 20 years have passed since a Terzaghi Lecture focused on the topic of deep foundations. However, considerable research has been performed, and experience gained, in this subject area in the intervening period. The objective of this paper is to update the earlier references on deep foundations by summarizing results of important recent research on a few aspects of the topic of side resistance, most notably (1) driven piles in saturated clay, (2) driven piles in siliceous sand loaded in compression and uplift, (3) drilled shafts in clay, and (4) drilled shafts in soft rock. It is concluded that, while simple design relations are available for topic (1), much is still to be learned. Under topic (2), the case is made that loading the pile in compression and uplift produces different values of unit side-shearing resistance. Regarding topics (3) and (4), the effects of details related to construction—such as stress relief, moisture migration from the concrete to the geomaterial, borehole roughness, and borehole smear—are shown to be significant. The final point made is that the design of deep foundations is a complex matter that should be addressed in a design context by engineers who are experienced in the observation of pile behavior, theoretical modeling, and the appropriate use of design methods.  相似文献   

19.
The ultimate bearing capacity of short, precast concrete piles driven into calcareous sands was examined by pile-load tests carried out at two sites in Kuwait. The piles had a 0.3 m × 0.3 m square cross section and extended to a maximum depth of 12 m. They were driven through a loose-to-compact calcareous surface sand layer underlain by a competent dense-to-very-dense siliceous cemented sand deposit. The pile tips and part of the pile shafts were embedded in the lower layer. The base resistance and shaft friction were calculated using the Meyerhof method for a layered soil profile. The method employs the standard penetration test N values. The results indicate that a great portion of the pile capacity is due to base resistance. The skin friction mobilized is small and consists of two components corresponding to the two layers penetrated along the pile shafts. The calculated pile capacities were very close to the measured values. The unit skin friction is not constant along the pile shafts.  相似文献   

20.
We have quantified hippocampal spine structure at the light and ultrastructural levels in cell cultures approximately 1- 3 weeks old and in the brains of rodents 5 and 21 d old. The number of spines bearing synapses increases with age in cultures and in brain, but the structures are similar in both. In culture, about half of the synapses are formed on spines and the remainder are formed on dendritic shafts. In the 5-d-old brain, about half of the synapses occur on dendritic shafts, by 3 weeks of age only approximately 20% of synapses are found on dendritic shafts, and in the adult shaft synapses are very rare.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号