首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Local pier scour experiments were performed in the laboratory to investigate the effect of relative sediment size on pier scour depth using three uniform sediment sizes and three bridge pier designs at different geometric model scales. When the data from a large number of experimental and field investigations are filtered according to a Froude number criterion, the effect of relative sediment size on dimensionless pier scour depth is brought into focus. The choice of sediment size in the laboratory model distorts the value of the ratio of pier width to sediment size in comparison with the prototype which in turn causes larger values of scour depth in the laboratory than in the field. This model distortion due to sediment size is shown to be related to the scaling of the large-scale unsteadiness of the horseshoe vortex by studying the relevant time scales of its coherent structure upstream of a bridge pier using acoustic Doppler velocimeter measurements. Observations of sediment movement, probability distributions of velocity components, and phase-averaging of velocity measured upstream of a bridge pier reveal properties of coherent motions that are discussed in terms of their contribution to the relationship between dimensionless pier scour depth and the ratio of pier width to sediment size over a large range of physical scales.  相似文献   

2.
Evolution of Scour Depth at Circular Bridge Piers   总被引:2,自引:0,他引:2  
Experiments of bridge pier scour are carried out under steady and unsteady clear-water scour conditions with uniform and nonuniform sediments. Around the pier nose, the sediment size variation of surface bed materials is investigated, and a regressed formula is obtained for estimating the mixing layer thickness in terms of median sediment size and geometric standard deviation of grain size distribution. A method based on the mixing layer concept is developed for calculating the equilibrium scour depth in nonuniform sediment. Based on the experimental data of scour rate, a model simulating the scour-depth evolution under steady flow in nonuniform sediment is presented. By analyzing experimental data, a scheme is proposed for computing the scour-depth evolution under unsteady flow.  相似文献   

3.
Design Method of Time-Dependent Local Scour at Circular Bridge Pier   总被引:2,自引:0,他引:2  
A reliable prediction of local scour depth related to hydrological characteristics such as peak discharge, and time corresponding to the equilibrium scour depth is essential for the efficient design of bridge pier foundation. In this paper, a design method to predict the local scour depth with time is proposed. An experimental program was carried out using a cylindrical pier placed in uniform beds under clear-water flows. The pier scour depth was calculated on the basis of a sediment transport equation. Equilibrium local scour depth is reached when the bed-shear stress tends to critical bed-shear stress in the scour hole. Hence, changes to bed-shear stress at the circular bridge pier should be incorporated in the sediment transport theory. The proposed method follows experimental data of various sources.  相似文献   

4.
Effect of Flood Recession on Scouring at Bed Sills   总被引:1,自引:0,他引:1  
The effect of the flood recession time on the local scour depth at bed sills in gravel deposits is examined. Experiments were carried out to study the development of scour holes under time-varying hydraulic conditions with no upstream sediment feed. Triangular-shaped hydrographs, having recession times up to three times the duration of the rising limb, were used. Traditionally, the peak water discharge in any flood event is used as a design value in estimating the final depth of scour formed by a flood. This approach is overly conservative when the flow hydrograph is steep, i.e., during the occurrence of flash floods. The actual reduction of the scour depth from this estimated value is dependent on both the characteristics of the flood event and the characteristics of the stream. The results show that the maximum potential scour depth can be achieved only for hydrographs with long recession times, while the rate of this process can be estimated as a function of the ratio between a characteristic flood time and the steady-state temporal scale of scour development. A method is proposed for the prediction of the scouring process under unsteady flows in terms of two dimensionless temporal parameters. Results obtained for clear-water boundary conditions can be extended to sediment-supply tests if specific supply input conditions hold.  相似文献   

5.
Local Scour and Riprap Stability at Bridge Piers in a Degrading Channel   总被引:2,自引:0,他引:2  
The experimental study examines local scouring and riprap stability at bridge piers in rivers subject to bed degradation. The data show that the equilibrium bed profile associated with that with or without a pier is essentially the same, except for the obvious section around the pier. Total scour depth is shown to be the sum of bed degradation and pier scour depth. The latter can be computed from the time-average live-bed scour depth associated with the undisturbed velocity ratio before bed degradation. The experimental data also show that pier-scour depth is invariant with time, for t ≥ 24?h. In a degrading channel, riprap around a pier will eventually develop into a stable mound when the bed shear stresses reduce with bed degradation. An auxiliary test shows that the mound is very vulnerable to another designed flood flow accompanied by large dunes. This type of riprap instability may be called bed-degradation induced failure.  相似文献   

6.
Characteristics of Horseshoe Vortex in Developing Scour Holes at Piers   总被引:3,自引:0,他引:3  
The outcome of an experimental study on the turbulent horseshoe vortex flow within the developing (intermediate stages and equilibrium) scour holes at cylindrical piers measured by an acoustic Doppler velocimeter (ADV) are presented. Since the primary objective was to analyze the evolution of the turbulent flow characteristics of a horseshoe vortex within a developing scour hole, the flow zone downstream of the pier was beyond the scope of the investigation. Experiments were conducted for the approaching flow having undisturbed flow depth ( = 0.25?m) greater than twice the pier diameter and the depth-averaged approaching flow velocity ( = 0.357?m/s) about 95% of the critical velocity of the uniform bed sand that had a median diameter of 0.81?mm. The flow measurements by the ADV were taken within the intermediate (having depths of 0.25, 0.5, and 0.75 times the equilibrium scour depth) and equilibrium scour holes (frozen by spraying glue) at a circular pier of diameter 0.12?m. In order to have a comparative study, the ADV measurements within an equilibrium scour hole at a square pier (side facing the approaching flow) of sides equaling the diameter of the circular pier were also taken. The contours of the time-averaged velocities, turbulence intensities, and Reynolds stresses at different azimuthal planes (0, 45, and 90°) are presented. Vector plots of the flow field at azimuthal planes reveal the evolution of the characteristics of the horseshoe vortex flow associated with a downflow from intermediate stages to equilibrium condition of scour holes. The bed-shear stresses are determined from the Reynolds stress distributions. The flow characteristics of the horseshoe vortex are discussed from the point of view of the similarity with the velocity and turbulence characteristic scales. The imperative observation is that the flow and turbulence intensities in the horseshoe vortex flow in a developing scour hole are reasonably similar.  相似文献   

7.
Clear-Water Scour below Underwater Pipelines under Steady Flow   总被引:1,自引:0,他引:1  
Experiments on clear-water scour below underwater pipelines (initially laid on the sediment bed) in uniform and nonuniform sediments under steady flow were conducted. Equilibrium scour profiles were modeled by a cubic polynomial. The experimental results are examined to describe the influence of various parameters on equilibrium scour depth. The equilibrium scour depth ds increases with increase in approach flow depth h for shallow flow depths, becoming independent of higher flow depths when h/b>5, where b=pipe diameter. However, the curves of scour depth versus sediment size d and Froude number Fb have a maximum value of ds/b = 1.65 at b/d = 27 and Fb = 0.6. The influence of sediment gradation on scour depth is prominent for nonuniform sediments, which reduce scour depth to a large extent due to the formation of armor layer within the scour hole. The influence of different shaped cross sections of pipes on the scour depth was investigated, where the shape factors for circular, 45° (diagonal facing) and 90° (side facing) square pipes obtained as 1, 1.29, and 1.91, respectively. Using the data of scour depths at different times, the time variation of scour depth is scaled by an exponential law, where the nondimensional time scale increases sharply with increase in Froude number characterized by the pipe diameter. In addition, clear-water scour below circular pipelines laid on a thinly armored sand bed (the sand bed is overlain by a thin armor layer of gravels) was experimentally studied. Depending on the pipe diameter, armor gravel, and bed-sand sizes, three cases of scour holes were recognized. The comparison of the experimental data reveals that the scour depth below a pipeline with an armor layer under limiting stability of the surface particles (approach flow velocity nearly equaling critical velocity for surface particles) is greater than that without armor layer for the same sand bed, if the secondary armoring formed within the scour hole is scattered. In contrast, the scour depth with an armor layer is less than that without armor layer for the same sand bed, when the scour hole is shielded by the secondary armor layer.  相似文献   

8.
Riprap of bridge piers is placed to prevent scour and to secure the pier from failure. Riprap is therefore an addition to a pier to increase its performance against scour. The present research intends to present three basic scour mechanisms associated with circular-shaped bridge piers in rivers first, to introduce then a number of selected experiments for a range of hydraulic, geometric, and sedimentologic conditions, and finally to describe a novel procedure for assessing the safety of these river elements against failure. This procedure is based on the Shields diagram relating to sediment entrainment in a uniform and flat sediment bed subjected by a water flow. The Shields approach is extended for the presence of a circular-shaped pier that is protected by a circular-arranged riprap layer of equal size elements. The design procedure presented in the following thus reduces to the entrainment condition of a pier for equal riprap and the sediment sizes and to the Shields entrainment condition when the pier diameter degenerates to 0.  相似文献   

9.
Results are presented from laboratory experiments to investigate the effectiveness of bed sills as countermeasures against local scouring at a smooth circular bridge pier, for flow conditions near the threshold of uniform sediment motion. The bed sill was located downstream of the pier, and its effectiveness with the distance between pier and sill was evaluated. The dependence of the scour depth on different dimensionless groups was defined. The results showed that a bed sill placed at a short distance downstream of the pier reduces the scour depth, area, and volume. In particular, the smaller the distance between the two structures, the larger the effectiveness of the countermeasure. The bed sill seems to take effect some time after the beginning of the test, as the scour hole downstream of the bridge pier develops sufficiently and interacts with the countermeasure.  相似文献   

10.
Effect of Jet Air Content on Plunge Pool Scour   总被引:1,自引:0,他引:1  
The effect of air discharge on plunge pool scour was investigated by using a simplified experimental configuration. Instead of considering the complete arrangement involving chute and deflector resulting in an air-water jet impinging on a sediment surface, the mixture flow was produced with a circular pipe for which the air concentration and the jet diameter close to impact on the free water surface are known. The results of this study were primarily directed to the definition of a three-phase Froude number that accounts for the combined effects of an air-water mixture jet on scour. The analysis of data allows simple estimates of the scour geometry including a generalized scour profile, the width of scour, and the temporal advance of the extreme scour depths. It was pointed out that for a certain water velocity and selected grain characteristics, the addition of air to the jet results in an increase of scour depth. However, if the reference would be the air-water mixture velocity, scour depth decreases significantly by the addition of air to the jet.  相似文献   

11.
Local scour at circular bridge piers embedded in a clay-sand-mixed bed was investigated in laboratory flume experiments. The effects of clay content, water content, and sand size on maximum equilibrium scour depth, equilibrium scour hole geometry, scouring process, and time variation of scour were studied at velocities close to the threshold velocities for the sand in the clay-sand mixture. It was observed that clay content and water content were the key parameters that effect the scouring process, scour hole geometry, and maximum equilibrium scour depth. The bridge pier scouring process in clay-sand mixtures involved different dominating modes for removal of sediment from scour hole: chunks-of-aggregates, aggregate-by-aggregate, and particle-by-particle. Regression-based equations for estimation of nondimensional maximum scour depth and scour hole diameter for piers embedded in clay-sand mixtures having clay content of <40% and water content of <40% were proposed as functions of pier Froude number, clay content, water content, and bed shear strength.  相似文献   

12.
The temporal effect of hydrograph on local scour depth is investigated under clear-water scour condition. By analyzing the characteristics of scour-depth evolutions at bridge piers for different rising hydrographs, a relation for estimating the maximum scour depth in uniform sediment is proposed. In the relation, the flow unsteadiness effect is taken into account by an unsteady flow parameter combining the peak-flow intensity and time-to-peak factors. For nonuniform sediment with d84 employed as the effective sediment size, this relation can yield reasonably good results of the maximum scour depth under rising hydrograph.  相似文献   

13.
Bridge scour is a severe problem that costs millions of dollars of damage to infrastructure annually and causes occasional loss of life. Scour occurs during times of rapid river flow and can be increased by icing conditions when sediments, including rocks, gravel, and silt, are transported by the currents, undermining bridge pier and abutment foundations and other structures. Scour is dynamic; during a single high-flow event, scour may occur during rising stages and near the peak. Deposition of sediments into the scoured area may occur during falling stages and during low flow. The worst case and the net effect cannot be easily predicted. Monitoring scour is difficult, and existing instruments have limitations that prevent their use in some situations. A technique and system employing time-domain reflectometry can be used to constantly monitor the extent of scour around riverine structures. This system is capable of continuous round-the-clock operation and can indicate changes in sediment depth of less than 5 cm.  相似文献   

14.
Local scour at circular piers founded on clay was studied experimentally in the laboratory to compare the depth of scour in sand and in clay and to investigate the effects of the Reynolds number, Froude number, and approach flow depth on scour depth. The depths of scour in front, at the side, and in the back of the piers were measured as a function of time under steady, gradually varied flow conditions. The measured scour-depth-versus-time curves were fitted with a hyperbola to estimate the equilibrium scour depths. The extrapolated equilibrium scour depths were compared with values predicted by the Federal Highway Administration equation. The results showed that although the rates of scour were much slower in clay than in sand, equilibrium scour in clay was about the same as in sand. It was found that the shape of the scour hole correlates with the pier Reynolds number. At low Reynolds numbers, the depth of scour was about the same all around the piers. At higher Reynolds numbers, the scour holes developed mainly behind the piers with much less scour in front of the piers. It was also found that the extrapolated equilibrium scour depth correlates well with the pier Reynolds number and that the Froude number and relative water depth did not have a significant effect on the scour depth for these experimental conditions.  相似文献   

15.
Riprap Protection at Bridge Piers   总被引:2,自引:0,他引:2  
Although riprap is the most commonly employed countermeasure against scouring around bridge piers, few studies exist of riprap performance under live-bed conditions. In this study, failure mechanisms, stability, and placement level effects for riprap at bridge piers are considered experimentally. Under clear-water conditions, riprap is subject to shear, winnowing, and edge failure. Under live-bed conditions, a fourth failure mechanism, destabilization by bed-form progression, becomes important. Destabilization by bed-form progression is dependent on the destabilizing influence of bed-form troughs as they pass the pier. Experiments were used to assess the ability of riprap stones to protect bridge piers under a wide range of flow conditions. The effects of placing the riprap layer at depth within the sediment bed, rather than level with the bed surface, were investigated also. The study showed that, as the flow velocity increases, the ability of riprap stones to protect a pier decreases asymptotically until the scour depth in the riprap layer reaches that of an equivalent unprotected pier. In addition, it was found that the deeper the placement level the less exposed the riprap was to destabilizing bed forms and the better the protection against local scour. Lowering the placement level also meant that the riprap performed better than for surface-placed layers as the flow velocity increased. The mode of riprap failure is also changed as the placement level below the bed surface is lowered. A pier riprap size-prediction equation is proposed, including a parameter to account for placement level.  相似文献   

16.
A simple procedure is proposed to assess the vulnerability of bridge piers in rivers, taking into account the phenomena governing fluvial dynamics during flood events. The procedure requires an estimation of the maximum scour depth of the soil surrounding both the pier and the foundation as well as an analysis of the bearing capacity of the pier–foundation–soil geotechnical system. The scour depth is determined in terms of the physical and mechanical properties of the streambed soil, the shape of the pier foundation and the destabilizing effects induced by hydrodynamic forces. The coupling of both the hydraulic and geotechnical analyses enables to identify the most significant factors characterizing scour depth and affecting pier vulnerability. Two levels (low, medium) of allowable vulnerability, bounded by an extreme condition of high vulnerability, are defined and analytically determined in function of the maximum scour depth and the foundation depth. Specific diagrams corresponding to each category of foreseen actions allow a quick evaluation of the vulnerability of a bridge pier.  相似文献   

17.
Experimental results on local scour in long contractions for uniform and nonuniform sediments (gravels and sands) under clear-water scour are presented. An emphasis was given to conduct the experiments on scour in long contractions for gravels. The findings of the experiments are used to describe the effects of various parameters (obtained from dimensional analysis) on equilibrium scour depth under clear-water scour. The equilibrium scour depth increases with decrease in opening ratio and with increase in sediment size for gravels. But the curves of scour depth versus sediment size have considerable sag at the transition of sand and gravel. The scour depth decreases with increase in densimetric Froude number, for larger opening ratios, and increases with increase in approaching flow depth at lower depths. However, it becomes independent of approaching flow depth at higher flow depths. The effect of sediment gradation on scour depth is pronounced for nonuniform sediments, which reduce scour depth significantly due to the formation of armor layer in the scour hole. Using the continuity and energy equations, a simple analytical model for the computation of clear-water scour depth in long contractions is developed with and without sidewall correction for contracted zone. The models agree satisfactorily with the present and other experimental data. Also, a new empirical equation of maximum equilibrium scour depth, which is based on the experimental data at the limiting stability of sediments in approaching channel under clear-water scour, is proposed. The potential predictors of the maximum equilibrium scour depth in long contractions are compared with the experimental data. The comparisons indicate that the equations given by Komura and Lim are the best predictors among those examined.  相似文献   

18.
Temporal Variation of Scour Depth at Nonuniform Cylindrical Piers   总被引:3,自引:0,他引:3  
The paper proposes a semiempirical model to estimate the temporal development of scour depth at cylindrical piers with unexposed foundations. A cylindrical pier with a foundation is considered as nonuniform pier. The concept of primary vortex and the principle of volumetric rate of sediment transport are used to develop a methodology to characterize the rate of evolution of the scour hole at nonuniform cylindrical piers. The model also simulates the entire scouring process at nonuniform cylindrical piers having the discontinuous surface located below the initial bed level. The scouring process includes three zones; viz Zone 1 having the scouring phenomenon similar to that of a uniform pier, Zone 2 in which the scour depth remains unchanged with its value equal to the depth of the top level of foundation below the initial bed level while the dimensions of the scour hole increase, and in Zone 3 the geometry pier foundation influences the scouring process. A concept of superposition using an effective pier diameter is proposed to simulate the scouring process in Zone 3. In addition, the laboratory experiments were conducted to utilize the laboratory results for the validation of the model. The simulated results obtained from the proposed model are in good agreement with the present experimental results and also other experimental data. Also, the effect of unsteadiness of flow is incorporated in the model and the results of the model are compared with the experimental data. The model agrees satisfactorily with the experimental data.  相似文献   

19.
The upward seepage through the bed sediment downstream of an apron of a sluice gate structure is a common occurrence due to afflux of the flow level between the upstream and downstream reaches of a sluice gate. The result of an experimental investigation on the characteristics of the scour hole and the flow-field downstream of an apron due to submerged jets under the influence of upward seepage through the bed sediment is presented. Experiments were run for the conditions of submerged jets, having submergence factors from 0.99 to 1.72 and jet Froude numbers from 3.15 to 4.87, over beds of sediments (median sizes = 0.8, 1.86, and 3?mm) downstream of an apron under upward seepage velocities. The characteristic lengths of the scour hole determined from the scour profiles are: the maximum equilibrium scour depth, the horizontal distance of the location of maximum scour depth from the edge of the apron, the horizontal extent of the scour hole from the edge of the apron, the dune height, and the horizontal distance of the dune crest from the edge of the apron, all of which were found to increase with an increase in the seepage velocity. Using experimental results, the time variation of the scour depth is scaled by an exponential law, where the nondimensional time scale decreases linearly with an increase in the ratio of the seepage velocity to the issuing jet velocity. The flow field in the submerged jets over both the apron and within the scour hole was detected using an acoustic Doppler velocimeter. The vertical distributions of time-averaged velocities, turbulence intensities and Reynolds stress at different streamwise distances, and the horizontal distribution of bed-shear stress are plotted for the conditions of scour holes with and without upward seepage. Vector plots of the flow field show that the rate of decay of the submerged jet decreases with an increase in the seepage velocity. The flow characteristics in the scour holes are analyzed in the context of the influence of upward seepage velocity on the decay of the velocity and turbulence intensities and the growth of the boundary layer.  相似文献   

20.
Clear-Water Scour at Abutments in Thinly Armored Beds   总被引:1,自引:0,他引:1  
Experiments on local scour at short abutments (ratio of abutment length to approaching flow depth less than unity), namely vertical-wall, 45° wing-wall, and semicircular, embedded in a bed of relatively fine noncohesive sediment overlain by a thin armor-layer of coarser sediment, were conducted for different flow conditions, thickness of armor-layers, armor-layer, and bed sediments. The abutments were aligned with the approaching flow in a rectangular channel. The armor-layer and the bed underneath it were composed of different combinations of uniform sediments. In the experiments, the approaching flow velocities were restricted to the clear-water scour condition with respect to the armor-layer particles. Depending on the approaching flow conditions, three cases of scour at abutments in armored beds were identified. Effects of different parameters pertaining to scour at abutments are examined. The comparison of the experimental data shows that the scour depth at an abutment with an armor-layer in clear-water scour condition under limiting stability of the surface particles (approaching flow velocity nearly equaling critical velocity for the threshold motion of surface particles) is always greater than that without armor-layer for the same bed sediments. The characteristic parameters affecting the maximum equilibrium nondimensional scour depth (scour depth-abutment length ratio), identified based on the physical reasoning and dimensional analysis, are excess abutment Froude number, flow depth-abutment length ratio, armor-layer thickness-armor particle diameter ratio, and armor particle-bed sediment diameter ratio. The experimental data of clear-water scour condition in thinly armored beds under limiting stability of surface particles were used to determine the equation of maximum equilibrium scour depth through regression analysis. The estimated scour depths were in agreement with the experimental scour depths. Also, an equation of maximum equilibrium scour depth in uniform sediments was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号