首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Sulfur (S) isotopes have been used to apportion the amount of biogenic and anthropogenic sulfate in remote environments, an important parameter that is used to model the global radiation budget. A key assumption in the apportionment calculations is that there is little isotope selectivity as reduced compounds such as dimethyl sulfide (DMS) are oxidized. This paper describes a method to determine, for the first time, the S isotope composition of methanesulfonic acid (MSA), the product of DMS oxidation. The isotope composition of MSA was measured directly by EA-IRMS and was used as an isotope reference for the method. Synthetic mixtures approximating the conditions expected for aerosol MSA samples were prepared to test this method. First, MSA solutions were measured alone and then in combination with MSA and SO4(2-). In synthetic mixtures, SO4(2-) was separated from MSA by precipitating it as BaSO4 prior to preparation of MSA for isotope analysis. The delta 34S value for MSA solutions was -2.6 per thousand (SD +/- 0.4 per thousand), which is not different from the delta 34S obtained from MSA filtrate after precipitating SO4(2-) from the mixture (-2.7 +/- 0.3 per thousand). However, these values are offset from direct EA-IRMS analysis of MSA used as the isotope reference by -1.1 +/- 0.2 per thousand, and this must be accounted for in reporting MSA measurements. The S isotope measurements using this method approach a limiting value above 300 microg of MSA. This is approximately equal to the MSA found in 20,000 m3 of air, assuming ambient concentrations of approximately 15 ng m(-3). Three samples of MSA from the Pacific Ocean measured using this technique have an average delta 34S value of +17.4 +/- 0.7 per thousand.  相似文献   

2.
A continuous flow method (CF-IRMS) for the rapid determination of the sulfur isotope composition of sulfide and sulfate minerals has significant advantages over the classic extraction method in terms of the reduced sample quantity and a rapid analytical cycle of less than 8 min/ analysis. For optimum performance, the technique is sensitive to a number of operating parameters, including sample weight and the O2 saturation of the Cu-reduction reactor. Raw data are corrected using a calibration based on five international and internal standards ranging from -17.3 to +20.3 per thousand, which requires monitoring in order to correct the effect of changing delta18O of the sample gas on the measured mass 66 values. Measured sulfur contents are within 1-1.5% of expected values and the reproducibility of delta34S values is +/-0.1 per thousand (1sigma). The technique has been used successfully for more than 1000 analyses of geological samples with a wide range of delta34S from -20 to +20 per thousand.  相似文献   

3.
An accurate and precise method for the determination of delta34S measurements by multicollector inductively coupled plasma mass spectrometry has been developed. Full uncertainty budgets, taking into consideration all the uncertainties of the measurement process, have been calculated. The technique was evaluated by comparing measured values with a range of isotopically enriched sulfur solutions prepared by gravimetric addition of a 34S spike. The gravimetric and measured results exhibited a correlation of R2 >0.999. Repeat measurements were also made after adding Na (up to 420 microg g(-1)) and Ca (up to 400 microg g(-1)) salts to the sulfur standard. No significant deviations in the delta34S values were observed. The Russell correction expression (Ingle, C.; Sharp, B.; Horstwood, M.; Parrish, R.; Lewis, D. J. J. Anal. At. Spectrom. 2003, 18, 219) was used to correct for mass bias on the 34S/32S isotope amount ratio from the mass bias observed for the 30Si/28Si isotope amount ratio. Consistent compensation for instrumental mass bias was achieved. Resolution of the measured delta34S values was better than 1 per thousand after consideration of all uncertainty components. The technique was evaluated for practical applications by measurement of delta34S for a range of mineral waters by pneumatic nebulization sample introduction and the analysis of genuine and counterfeit pharmaceuticals using both laser ablation sample introduction and liquid chromatography. For the former two cases polyatomic interferences were resolved by operating the MC-ICPMS in medium resolution, while for the chromatographic analyses polyatomic interferences were minimized by the use of a membrane desolvator, allowing the instrument to be operated at a resolution of 400.  相似文献   

4.
Lithium isotope composition of basalt glass reference material   总被引:2,自引:0,他引:2  
We present data on the lithium isotope compositions of glass reference materials from the United States Geological Survey (USGS) and the National Institute of Standards and Technology (NIST) determined by multicollector inductively coupled plasma mass spectrometry (MC-ICPMS), thermal ionization mass spectrometry (TIMS), and secondary ionization mass spectrometry (SIMS). Our data on the USGS basaltic glass standards agree within 2 per thousand, independent of the sample matrix or Li concentration. For SIMS analysis, we propose use of the USGS glasses GSD-1G (delta(7)Li 31.14 +/- 0.8 per thousand, 2sigma) and BCR-2G (delta(7)Li 4.08 +/- 1.0 per thousand, 2sigma) as suitable standards that cover a wide range of Li isotope compositions. Lithium isotope measurements on the silica-rich NIST 600 glass series by MC-ICPMS and TIMS agree within 0.8 per thousand, but SIMS analyses show systematic isotopic differences. Our results suggest that SIMS Li isotope analyses have a significant matrix bias in high-silica materials. Our data are intended to serve as a reference for both microanalytical and bulk analytical techniques and to improve comparisons between Li isotope data produced by different methodologies.  相似文献   

5.
We applied a photoacoustic spectroscopy technique to isotope ratio measurements of (16)O and (18)O in water-vapor samples, using a pulsed tunable dye laser pumped by a Nd:YAG laser. The fourth overtone bands (4nu(OH)) of water molecules near 720 nm were investigated. We identified the absorption lines of H(2)(16)O and H(2)(18)O in the photoacoustic spectra that we measured by using an (18)O-enriched water sample and the HITRAN database. We measured the difference in the (18)O/(16)O isotope ratios for normal distilled water and Antarctic ice, using the photoacoustic method. The value obtained for the difference between the two samples is delta(18)O = -32 ? 16 per thousand, where the indicated deviation was a 1varsigma value among 240-s measurements, whereas the value measured with a conventional isotope mass spectrometer was delta(18)O = -28 ? 2 per thousand. This method is demonstrated to have the potential of a transportable system for in situ and quick measurements of the H(2)(18)O/H(2)(16)O ratio in the environment.  相似文献   

6.
Solid-phase microextraction (SPME) coupled to gas chromatography/isotope ratio mass spectrometry was used to determine the delta15N and delta13C signatures of selected nitroaromatic contaminants such as the explosive 2,4,6-trinitrotoluene (TNT) for derivation of isotopic enrichment factors of contaminant transformation. Parameters for efficient extraction of nitroaromatic compounds (NACs) and substituted anilines from water samples were evaluated by SPME-GC/MS. delta13C signatures determined by SPME-GC/IRMS and elemental analyzer IRMS (EA-IRMS) were in good agreement, generally within +/-0.7 per thousand, except for 2,4-dinitrotoluene (2,4-DNT) and TNT, which showed slight deviations (<1.3 per thousand). Limits of detection (LODs) for delta13C analysis by SPME-GC/IRMS were between 73 and 780 microg L-1 and correlated with the extraction efficiencies of the compounds determined by SPME-GC/MS. Nitrogen isotope measurements by SPME-GC/IRMS were of similar precision (standard deviations <0.8 per thousand) for all NACs except for TNT. delta15N signatures matched the reference values obtained by EA-IRMS within +/-1.3 per thousand (+2.5 per thousand for TNT), but no systematic trend was found for the deviations. LODs of delta15N measurements ranged from 1.6 to 9.6 mg L-1 for nitrotoluenes, chlorinated NACs and DNTs (22 mg L-1 for TNT). The SPME-GC/IRMS method is well suited for the determination of isotopic enrichment factors of various NAC transformation processes and provides so far unexplored possibilities to elucidate behavior and degradation mechanisms of nitroaromatic contaminants in soils and groundwaters.  相似文献   

7.
The relevance of both modern and fossil carbon contamination as well as isotope fractionation during preparative gas chromatography for compound-specific radiocarbon analysis (CSRA) was evaluated. Two independent laboratories investigated the influence of modern carbon contamination in the sample cleanup procedure and preparative capillary gas chromatography (pcGC) of a radiocarbon-dead 3,3',4,4',5,5'-hexachlorobiphenyl (PCB 169) reference. The isolated samples were analyzed for their 14C/12C ratio by accelerator mass spectrometry. Sample Delta14C values of -996 +/- 20 and -985 +/- 20 per thousand agreed with a Delta14C of -995 +/- 20 per thousand for the unprocessed PCB 169, suggesting that no significant contamination by nonfossil carbon was introduced during the sample preparation process at either laboratory. A reference compound containing a modern 14C/12C ratio (vanillin) was employed to evaluate process contamination from fossil C. No negative bias due to fossil C was observed (sample Delta14C value of 165 +/- 20 per thousand agreed with Delta14C of 155 +/- 12 per thousand for the unprocessed vanillin). The extent of isotopic fractionation that can be induced during pcGC was evaluated by partially collecting the vanillin model compound of modern 14C/12C abundance. A significant change in the delta13C and delta14C values was observed when only parts of the eluting peak were collected (delta13C values ranged from -15.75 to -49.91 per thousand and delta14C values from -82.4 to +4.71 per thousand). Delta14C values, which are normalized to a delta13C of -25 per thousand, did not deviate significantly (-58.9 to -5.8 per thousand, considering the uncertainty of approximately +/-20 per thousand). This means that normalization of radiocarbon results to a delta13C of -25 per thousand, normally performed to remove effects of environmental isotope fractionation on 14C-based age determinations, also cor-rects sufficiently for putative isotopic fractionation that may occur during pcGC isolation of individual compounds for CSRA.  相似文献   

8.
Interlaboratory comparisons involving nine European stable isotope laboratories have shown that the routine methods of cellulose preparation resulted in data that generally agreed within the precision of the isotope ratio mass spectrometry (IRMS) method used: +/-0.2 per thousand for carbon and +/-0.3 per thousand for oxygen. For carbon, the results suggest that holocellulose is enriched up to 0.39 per thousand in 13C relative to the purified alpha-cellulose. The comparisons of IRMS measurements of carbon on cellulose, sugars, and starches showed low deviations from -0.23 to +0.23 per thousand between laboratories. For oxygen, IRMS measurements varied between means from -0.39 to 0.58 per thousand, -0.89 to 0.42 per thousand, and -1.30 to 1.16 per thousand for celluloses, sugars, and starches, respectively. This can be explained by different effects arising from the use of low- or high-temperature pyrolysis and by the variation between laboratories in the procedures used for drying and storage of samples. The results of analyses of nonexchangeable hydrogen are very similar in means with standard deviations between individual methods from +/-2.7 to +/-4.9 per thousand. The use of a one-point calibration (IAEA-CH7) gave significant positive offsets in delta2H values up to 6 per thousand. Detailed analysis of the results allows us to make the following recommendations in order to increase quality and compatibility of the common data bank: (1) removal of a pretreatment with organic solvents, (2) a purification step with 17% sodium hydroxide solution during cellulose preparation procedure, (3) measurements of oxygen isotopes under an argon hood, (4) use of calibration standard materials, which are of similar nature to that of the measured samples, and (5) using a two-point calibration method for reliable result calculation.  相似文献   

9.
An IR-laser fluorination technique is reported here for analyzing the oxygen isotope composition (delta18O) of microscopic biogenic silica grains (phytoliths and diatoms). Performed after a controlled isotopic exchanged (CIE) procedure, the laser fluorination technique that allows one to visually check the success of the fluorination reaction is faster than the conventional fluorination technique and allows analyzing delta18O of small to minute samples (1.6-0.3 mg) as required for high-resolution paleoenvironmental reconstructions. The long-term reproducibility achieved with the IR laser-heating fluorination/O2 delta18O analysis is lower than or equal to +/-0.26 per thousand (1 SD; n = 99) for phytoliths and +/-0.17 per thousand (1 SD; n = 47) for diatoms. When several CIE are taken into account in the SD calculation, the resulting reproducibility is lower than or equal to +/-0.51 per thousand for phytoliths (1 SD; n = 99; CIE > 5) and +/-0.54 per thousand (1 SD; n = 47; CIE = 13) for diatoms. A minimum reproducibility of +/-0.5 per thousand leads to an estimated uncertainty on delta18Osilica close to +/-0.5 per thousand. Resulting uncertainties on reconstructed temperature and delta18Oforming water are, respectively, +/-2 degrees C and +/-0.5 per thousand and fit in the precisions required for intertropical paleoenvironmental reconstructions. Several methodological points such as optimal extraction protocols and the necessity or not of performing two CIE prior to oxygen extraction are assessed.  相似文献   

10.
Improved sensitivity in the analysis of stable chlorine isotopes of organochlorines (delta(37)Cl-OCl) has been established using sealed tube combustion in conjunction with thermal ionization mass spectrometry (TIMS). TIMS of chlorine isotopes was performed on <85 nmol of Cl with an achievable precision of <0.25 per thousand for pure inorganic chloride samples and 0.46 per thousand for chloride liberated from organochlorines (OCls). This makes possible significant reductions in the overall sample size requirement, as compared to the techniques of gas source stable isotope ratio mass spectrometry (SIRMS). Yields in excess of 99% were demonstrated in the dechlorination of <0.14 micromol 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT), and the overall yield, including purification of liberated chloride, was 86-97%. The accuracy of TIMS in the measurement of chlorine isotopes derived from OCls was confirmed by analysis of a DDT sample previously analyzed with SIRMS.(9) Using the described method for TIMS, the DDT sample gave a bulk chlorine isotope ratio of delta(37)Cl -4.42 +/- 0.46 per thousand (1sigma). The reported value from SIRMS analysis is -4.34 +/- 0.25 per thousand, indicating the conformity of the two methods.  相似文献   

11.
We present the first measurements of Fe isotope variations in chemically purified natural samples using high mass resolution multiple-collector inductively coupled plasma source mass spectrometry (MC-ICPMS). High mass resolution allows polyatomic interferences at Fe masses to be resolved (especially, (40)Ar(14)N(+), (40)Ar(16)O(+), and (40)Ar(16)OH(+)). Simultaneous detection of Fe isotope ion beams using multiple Faraday collectors facilitates high-precision isotope ratio measurements. Fe in basalt and paleosol samples was extracted and purified using a simple, single-stage anion chemistry procedure. A Cu "element spike" was used as an internal standard to correct for variations in mass bias. Using this procedure, we obtained data with an external precision of 0.03-0.11 per thousand and 0.04-0.15 per thousand for delta(56/54)Fe and delta(57/54)Fe, respectively (2sigma). Use of Cu was necessary for such reproducibility, presumably because of subtle effects of residual sample matrix on mass bias. These findings demonstrate the utility of high-resolution MC-ICPMS for high-precision Fe isotope analysis in geologic and other natural materials. They also highlight the importance of internal monitoring of mass bias, particularly when using routine methods for Fe extraction and purification.  相似文献   

12.
We report an automated method for high-precision position-specific isotope analysis (PSIA) of carbon in amino acid analogues. Carbon isotope ratios are measured for gas-phase pyrolysis fragments from multiple sources of 3-methylthiopropylamine (3MTP) and isoamylamine (IAA), the decarboxylated analogues of methionine and leucine, using a home-built gas chromatography (GC)-pyrolysis-GC preparation system coupled to a combustion-isotope ratio mass spectrometry system. Over a temperature range of 620-900 degrees C, the characteristic pyrolysis products for 3MTP were CH4, C2H6, HCN, and CH3CN and for IAA products were propylene, isobutylene, HCN, and CH3CN. Fragment origin was confirmed by 13C-labeling, and fragments used for isotope analysis were generated from unique moieties with > 95% structural fidelity. Isotope ratios for the fragments were determined with an average precision of SD(delta13C) < 0.3% per thousand, and relative isotope ratios of fragments from different sources were determined with an average precision of SD(delta(delta)13C) < 0.5% per thousand. Delta(delta)13C values of fragments were invariant over a range of pyrolysis temperatures. The delta(delta)13C of complementary fragments in IAA was within 0.8% per thousand of the delta(delta)13C of the parent compounds, indicating that pyrolysis-induced isotopic fractionation is effectively taken into account with this calibration procedure. Using delta(delta)13C values of fragments, delta(delta)13C values were determined for all four carbon positions of 3MTP and for C1, C2, and the propyl moiety of IAA, either directly or indirectly by mass balance. Large variations in position-specific isotope ratios were observed in samples from different commercial sources. Most dramatically, two 3MTP sources differed by 16.30% per thousand at C1, 48.33% per thousand at C2, 0.37% per thousand at C3, and 5.36% per thousand at C(methyl). These PSIA techniques are suitable for studying subtle changes in intramolecular isotope ratios due to natural processes.  相似文献   

13.
Newly available gas analyzers based on off-axis integrated cavity output spectroscopy (OA-ICOS) lasers have been advocated as an alternative to conventional isotope-ratio mass spectrometers (IRMS) for the stable isotopic analysis of water samples. In the case of H2O, OA-ICOS is attractive because it has comparatively low capital and maintenance costs, the instrument is small and field laboratory portable, and provides simultaneous D/H and 16O/18O ratio measurements directly on H2O molecules with no conversion of H2O to H2, CO, or H2/CO2-water equilibration required. Here we present a detailed assessment of the performance of a liquid-water isotope analyzer, including instrument precision, estimates of sample memory and sample mass effects, and instrumental drift. We provide a recommended analysis procedure to achieve optimum results using OA-ICOS. Our results show that, by using a systematic sample analysis and data normalization procedure routine, measurement accuracies of +/-0.8 per thousand for deltaD and +/-0.1 per thousand delta18O are achievable on nanoliter water samples. This is equivalent or better than current IRMS-based methods and at a comparable sample throughput rate.  相似文献   

14.
Recent advances in gas chromatography combustion-isotope ratio mass spectrometry (GCC-IRMS) has made compound-specific isotope analysis routine, but reports on position-specific isotopic analysis are still scarce. On-line GC-pyrolysis (Py) coupled to GCC-IRMS is reported here for isolation and isotopic characterization of alaninol and phenethylamine, analogues of alanine and phenylalanine, respectively. Ideally, pyrolytic fragments will originate from unique sites within the parent molecule, and isotope ratios for each position within the parent can either be measured directly or calculated from fragment isotope ratios without substantially degrading the analytical precision. Alaninol pyrolysis yielded several fragments, of which CO and CH4 were used for isotope ratio calculations. Isotope labeling experiments showed that CO derived entirely from the C(1) position, while all three positions of alaninol contributed to CH4 (29.0 +/- 0.3% from C(1), 3.6 +/- 0.2% from C(2), and 66.9 +/- 1.1% from C(3)). We demonstrate iterative use of mass balance to calculate isotope ratios from all positions despite the nonideal positional fidelity of CH4. Pyrolysis of phenethylamine generated benzene and toluene fragments. Benzene derived entirely from C(ring), and toluene was proportionately formed from C(3) and C(ring). Relative intramolecular isotope ratios (Deltadelta13C) were calculated directly from delta13C of fragments or indirectly by mass balance. Though the C(3) isotope ratio was calculated from the benzene and toluene fragments, propagation of errors showed that the final precision of the determination was degraded due to the small contribution that C(3) makes to toluene. Samples of each amino acid from four different vendors showed natural variability between sources, especially at the C(1) position of alaninol (range of Deltadelta13C approximately 50 per thousand). The average precision was SD(Deltadelta13C) < 0.20 per thousand for directly measured positions of alaninol and phenethylamine. The precision of indirectly measured positions was poorer (SD(Deltadelta13C) = 0.94 per thousand for alaninol, 6.54 per thousand for phenethylamine) due to propagation of errors. These data demonstrate that GC-Py-GCC-IRMS data can be used to extract high-precision isotope ratios from amino acids despite nonideal positional fidelity in fragments and that natural intramolecular variability in delta13C can be used to distinguish different sources of amino acids.  相似文献   

15.
A thermal decomposition method was developed and tested for the simultaneous determination of delta 18O and delta 17O in nitrate. The thermal decomposition of AgNO3 allows for the rapid and accurate determination of 18O/ 16O and 17O/16O isotopic ratios with a precision of +/- 1.5 per thousand for delta 18O and +/- 0.11 per thousand for delta 17O (delta 17O = delta 17O - 0.52 x delta 18O). The international nitrate isotope reference material IAEA-NO3 yielded a delta 18O value of +23.6 per thousand and delta 17O of -0.2 per thousand, consistent with normal terrestrial mass-dependent isotopic ratios. In contrast, a large sample of NaNO3 from the Atacama Desert, Chile, was found to have delta 17O = 21.56 +/- 0.11 per thousand and delta 18O = 54.9 +/- 1.5 per thousand, demonstrating a substantial mass-independent isotopic composition consistent with the proposed atmospheric origin of the desert nitrate. It is suggested that this sample (designated USGS-35) can be used to generate other gases (CO2, CO, N2O, O2) with the same delta 17O to serve as measurement references for a variety of applications involving mass-independent isotopic compositions in environmental studies.  相似文献   

16.
A new methodology for bromine stable isotope determination by continuous-flow isotope ratio mass spectrometry (CF-IRMS) was developed. The technique was tested on inorganic samples. Inorganic bromide was precipitated in the form of silver bromide by using silver nitrate in a standard methodology. Bromine stable isotope analysis was carried out on methyl bromide (CH3Br) after converting silver bromide to methyl bromide by reacting it with methyl iodide (CH3I). The system used in this study is an IsoPrime IRMS, with analytical capabilities of both dual-inlet and continuous-flow modes coupled with an Agilent 6890 GC equipped with a CTC Analytics CombiPAL autosampler. This new technique measures samples as small as 0.2 mg of AgBr (1 micromol of Br-). The bromine stable isotope analysis using continuous flow technology showed excellent precision and accuracy. The internal precision using pure methyl bromide gas is better than +/-0.03 per thousand (+/-SD); the external precision using seawater standard is better than +/-0.06 per thousand (+/-SD) for n = 12. Moreover, the sample analysis time is 16 min, as compared to 75 min needed in previous techniques. This allows for 50 samples to be analyzed in 1 day, as compared to 8 samples using the conventional techniques. A series of natural saline formation waters and brines from sedimentary and crystalline rock environments was measured by this new methodology to test the potential natural range of delta81Br. The bromine isotopic composition of the samples ranged from 0.00 to +1.80 per thousand relative to standard mean ocean bromide (SMOB). Initial trends and distinctive isotopic difference were noticed between crystalline shield brines and sedimentary formation brines.  相似文献   

17.
Here we describe an on-line method for measuring delta(37)Cl values of chloride bearing salts, waters, and organic materials using multicollector continuous-flow isotope ratio mass spectrometry (CF-IRMS). Pure AgCl quantitatively derived from total Cl in water, inorganic Cl salts, and biological samples was reacted with iodomethane in evacuated 10-mL stopper sealed glass vials to produce methyl chloride gas. A GV Instruments Multicollector CF-IRMS with CH(3)Cl optimized collector geometry was modified to accommodate a headspace single-sample gas injection port prior to a GC column. The GC column was a 2-m Porapak-Q packed column held at 160 degrees C. The resolved sample CH(3)Cl was introduced to the IRMS source in a helium stream via an open split. delta(37)Cl values were calculated by measurement of CH(3)Cl at m/z 52/50 and by comparison to a reference pulse of CH(3)Cl calibrated to standard mean ocean chloride. Sample CH(3)Cl analysis time was approximately 6 min. Injections of 40 microL of pure CH(3)Cl gas yielded a repeatability (+/-SD) of +/-0.06 per thousand for delta(37)Cl (n = 10). Combined GC and IRMS source linearity for CH(3)Cl was <0.2 per thousand/nA (V) peak height. External repeatability, based on processing of seawater and NaCl reference solutions, was better than +/-0.08 per thousand. The smallest sample for delta(37)Cl analysis by this method was approximately 0.2 micromol of Cl. Selected results from a river basin and biological samples study illustrate the potential of on-line chlorine isotope assays in environmental pollution studies.  相似文献   

18.
The stable isotope composition of dissolved organic carbon (delta(13)C-DOC) provides powerful information toward understanding carbon sources and cycling, but analytical limitations have precluded its routine measurement in natural samples. Recent interfacing of wet oxidation-based dissolved organic carbon analyzers and isotope ratio mass spectrometers has simplified the measurement of delta(13)C-DOC in freshwaters, but the analysis of salty estuarine/marine samples still proves difficult. Here we describe the coupling of the more widespread high-temperature catalytic oxidation-based total organic carbon analyzer to an isotope ratio mass spectrometer (HTC-IRMS) through cryogenic trapping of analyte gases exiting the HTC analyzer for routine analysis of delta(13)C-DOC in aquatic and marine samples. Targeted elimination of major sources of background CO2 originating from the HTC analyzer allows for the routine measurement of samples over the natural range of DOC concentrations (from 40 microM to over 2000 microM), and salinities (<0.1-36 g/kg). Because consensus reference natural samples for delta(13)C-DOC do not exist, method validation was carried out with water-soluble stable isotope standards as well as previously measured natural samples (IAEA sucrose, Suwannee River Fulvic Acids, Deep Sargasso Sea consensus reference material, and St. Lawrence River water) and result in excellent delta(13)C-DOC accuracy (+/-0.2 per thousand) and precision (+/-0.3 per thousand).  相似文献   

19.
Intramolecular carbon isotope ratios reflect the source of a compound and the reaction conditions prevailing during synthesis and degradation. We report here a method for determination of relative (Deltadelta13C) and absolute (delta13C) intramolecular isotope ratios using the volatile lactic acid analogue propylene glycol as a model compound, measured by on-line gas chromatography-pyrolysis coupled to GC-combustion-isotope ratio mass spectrometry. Pyrolytic fragmentation of about one-third of the analyte mass produces optimal fragments for isotopic analysis, from which relative isotope ratios (Deltadelta13C) are calculated according to guidelines presented previously. Calibration to obtain absolute isotope ratios is achieved by quantifying isotope fractionation during pyrolysis with an average fractionation factor, alpha, and evaluated by considering extremes in isotopic fractionation behavior. The method is demonstrated by calculating ranges of absolute intramolecular isotope ratios in four samples of propylene glycol. Relative and absolute isotope ratios were calculated with average precisions of SD(Deltadelta13C) <0.84 per thousand and SD(delta13C) <3.0 per thousand, respectively. The various fractionation scenarios produce an average delta(13)C range of 2 per thousand for each position in each sample. Relative isotope ratios revealed all four samples originated from unique sources, with samples A, B, and D only distinguishable at the position-specific level. Regardless of pyrolysis fractionation distribution, absolute isotope ratios showed a consistent pattern for all samples, with delta13C(3) > delta13C(2) > delta13C(1). The validity of the method was determined by examining the difference in relative isotope ratios calculated through two independent methods: Deltadelta13C calculated directly using previous methods and Deltadelta13C extracted from absolute isotope ratios. Deviation between the two Deltadelta13C values for all positions averaged 0.1-0.2 per thousand, with the smallest deviation obtained assuming equal fractionation across all fragment positions. This approach applies generally to all compounds analyzed by pyrolytic PSIA.  相似文献   

20.
A procedure is described for precise Hg isotope ratio measurements by solution nebulization multicollector inductively coupled plasma mass spectrometry (MC-ICPMS). Hg was released from geological samples using aqua regia extraction and then separated from other matrix elements with the aid of anion-exchange chromatography using strongly basic Dowex 1-X8 anion-exchange resin. Performance of the chromatographic procedure was evaluated using various types of replacement anions for elution of mercury, including l-cysteine, thiourea, NO3-, and SO42-. A solution of 0.15% l-cysteine in 0.06 M HCl was found to be the most convenient eluent for subsequent MC-ICPMS measurements. The optimized procedure provides separation of Hg from virtually all concomitant matrix elements while maintaining quantitative (>95%) recovery. In addition, band displacement chromatographic experiments were conducted to assess whether the anion-exchange purification can produce Hg isotope fractionation artifacts. No isotope fractionation between the Hg(II)-l-cysteine complex in aqueous solution and Hg ions in the anion-exchange resin was observed. Hg isotope ratio measurements were performed using the bracketing standards approach and on-line correction for instrumental mass discrimination using Tl spiking and normalization to the 205Tl/203Tl ratio. The absence of spectral interference during Hg isotope ratio measurements was verified using a three-isotope plot. Uncertainties of Hg isotope ratio measurements for replication of the entire procedure, expressed as two standard deviations, are better than +/-0.08 per thousand/amu. The described procedure facilitates study of variations in the isotopic composition of Hg in nature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号