首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Mobile‐to‐mobile (M‐to‐M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M‐to‐M multiple‐input multiple‐output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double‐correlated Rayleigh‐and‐Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three‐dimensional (3D) M‐to‐M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal‐to‐noise ratio per receive antenna in closed‐form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the xy plane, angle between the xy plane and the antenna array orientation, and degree of scattering in the xy plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

2.
For wireless multiple‐input multiple‐output (MIMO) communications systems, both channel estimation error and spatial channel correlation should be considered when designing an effective signal detection system. In this paper, we propose a new soft‐output MMSE based Vertical Bell Laboratories Layered Space‐Time (V‐BLAST) receiver for spatially‐correlated Rician fading MIMO channels. In this novel receiver, not only the channel estimation errors and channel correlation but also the residual interference cancellation errors are taken into consideration in the computation of the MMSE filter and the log‐likelihood ratio (LLR) of each coded bit. More importantly, our proposed receiver generalizes all existing soft‐output MMSE V‐BLAST receivers, in the sense that, previously proposed soft‐output MMSE V‐BLAST receivers can be derived as the reduced forms of our receiver when the above three considered factors are partially or fully simplified. Simulation results show that the proposed soft‐output MMSE V‐BLAST receiver outperforms the existing receivers with a considerable gain in terms of bit‐error‐rate (BER) performance. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
Multi‐hop communications equipped with parallel relay nodes is an emerging network scenario visible in environments with high node density. Conventional interference‐free medium access control (MAC) has little capability in utilizing such parallel relays because it essentially prohibits the existence of co‐channel interference and limits the feasibility of concurrent communications. This paper aims at presenting a cooperative multi‐input multi‐output (MIMO) space division multiple access (SDMA) design that uses each hop's parallel relay nodes to improve multi‐hop throughput performance. Specifically, we use MIMO and SDMA to enable concurrent transmissions (from multiple Tx nodes to single/multiple Rx nodes) and suppress simultaneous links' co‐channel interference. As a joint physical layer (MAC/PHY) solution, our design has multiple MAC modules including load balancing that uniformly splits traffic packets at parallel relay nodes and multi‐hop scheduling taking co‐channel interference into consideration. Meanwhile, our PHY layer modules include distributive channel sounding that exchanges channel information in a decentralized manner and link adaptation module estimating instantaneous link rate per time frame. Simulation results validate that compared with interference‐free MAC or existing Mitigating Interference using Multiple Antennas (MIMA‐MAC), our proposed design can improve end‐to‐end throughput by around 30% to 50%. In addition, we further discuss its application on extended multi‐hop topology. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

4.
Multiuser multiple‐input multiple‐output orthogonal frequency division multiple access (MIMO‐OFDMA) is considered as the practical method to attain the capacity promised by multiple antennas in the downlink direction. However, the joint calculation of precoding/beamforming and resource allocation required by the optimal algorithms is computationally prohibitive. This paper proposes computationally efficient resource allocation algorithms that can be invoked after the precoding and beamforming operations. To support stringent and diverse quality of service requirements, previous works have shown that the resource allocation algorithm must be able to guarantee a specific data rate to each user. The constraint matrix defined by the resource allocation problem with these data rate constraints provides a special structure that lends to efficient solution of the problem. On the basis of the standard graph theory and the Lagrangian relaxation, we develop an optimal resource allocation algorithm that exploits this structure to reduce the required execution time. Moreover, a lower‐complexity suboptimal algorithm is introduced. Extensive simulations are conducted to evaluate the computational and system‐level performance. It is shown that the proposed resource allocation algorithms attain the optimal solution at a much lower computational overhead compared with general‐purpose optimization algorithms used by previous MIMO‐OFDMA resource allocation approaches. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

5.
Since the concept of the multiuser multiple input multiple output (MU‐MIMO) system has been introduced for enhancement of capacity and flexibility, it has been accepted in various wireless standards. To enjoy the benefits of the MU‐MIMO system, full or partial channel information is necessary at the transmitter, but how to use the full or partial feedback information in the practical system perspective has not been investigated well. In this paper, we analyze the interference of full usage concurrent transmission codebook based on the MU‐MIMO systems and also investigate the usage of channel information for a codebook based scheme and a zero‐forcing beamforming (ZFBF) scheme. Based on the analytic results, we propose two adaptive schemes for the practical usage perspective in MU‐MIMO‐OFDM systems. Firstly, we propose an adjustable uplink channel sounding scheme, which depends on the number of users in a given cell/sector in frequency division duplexing system, with ZFBF MU‐MIMO‐OFDM systems. Secondly, we propose an adaptive switching scheme, which depends on signal‐to‐noise ratio, between the codebook based scheme and the ZFBF scheme. The performance of the proposed scheme is evaluated with computer simulations, and the simulation results show that the proposed scheme provides the enhanced throughput over entire signal‐to‐noise‐ratio regions. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
文中介绍了一种双目标数字预失真(DPD)方案,并进行了实验研究。不增加系统复杂度的情况下, 可以有效地扩展MIMO 系统的线性化波束宽度。在发射机附近增设一个发射低功率信号的线性辅助转动装置,该 架构实现了MIMO 系统主波束线性化。实验平台由发射机系统和一个辅助转动装置组成,发射机天线阵列为1×4。 输入信号采用两个20 MHz 带宽峰均比分别为5. 7 dB 和5. 6 dB 的正交频分复用(OFDM)信号。实验研究结果表明, 采用了辅助转动装置的双目标DPD 方法后,邻信道功率比(ACPR)达到-50 dBc 以下的主波束线性化宽度可以扩展 到22°,同时信号归一化均方误差(NMSE)平均数值为-40 dB。该方案有效地拓宽了MIMO 系统线性化波束宽度。  相似文献   

7.
In this letter, we propose an efficient near‐optimal detection scheme (that makes use of a generalized sphere decoder (GSD)) for blind multi‐user multiple‐input multiple‐output (MU‐MIMO) systems. In practical MU‐MIMO systems, a receiver suffers from interference because the precoding matrix, the result of the precoding technique used, is quantized with limited feedback and is thus imperfect. The proposed scheme can achieve near‐optimal performance with low complexity by using a GSD to detect several additional interference signals. In addition, the proposed scheme is suitable for use in blind systems.  相似文献   

8.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
We compare the achievable throughput of time division multiple access (TDMA) multiple‐input multiple‐output (MIMO) schemes illustrated in the 3rd Generation Partnership Project (3GPP) MIMO technical report, versus the sum‐rate capacity of space‐time multiple access (STMA). These schemes have been proposed to improve the 3GPP high speed downlink packet access (HSDPA) channel by employing multiple antennas at both the base station and mobile stations. Our comparisons are performed in multi‐user environments and are conducted using TDMA such as Qualcomm's High Data Rate and HSDPA, which is a simpler technique than STMA. Furthermore, we present the unified optimal power allocation strategy for HSDPA MIMO schemes by exploiting the similarity of multiple antenna systems and multi‐user channel problems.  相似文献   

10.
In this paper, a wireless powered communication network (WPCN) consisting of a hybrid access point (H‐AP) and multiple user equipment (UE), all of which operate in full‐duplex (FD), is described. We first propose a transceiver structure that enables FD operation of each UE to simultaneously receive energy in the downlink (DL) and transmit information in the uplink (UL). We then provide an energy usage model in the proposed UE transceiver that accounts for the energy leakage from the transmit chain to the receive chain. It is shown that the throughput of an FD WPCN using the proposed FD UE (FD‐WPCN‐FD) can be maximized by optimal allocation of the UL transmission time to the UE by solving a convex optimization problem. Simulation results reveal that the use of the proposed FD UE efficiently improves the throughput of a WPCN with a practical self‐interference cancellation capability at the H‐AP. Compared to the WPCN with FD H‐AP and half‐duplex (HD) UE, FD‐WPCN‐FD achieved an 18% throughput gain. In addition, the throughput of FD‐WPCN‐FD was shown to be 25% greater than that of WPCN in which an H‐AP and UE operated in HD.  相似文献   

11.
Minimum transmit sum power (MTSP) is of high theoretical and practical value in multi‐user rate‐constrained systems; it is, however, quite difficult to be numerically characterized in complex channels for the prohibitively high computational power required. In this paper, we present a computationally efficient method to approximate the MTSP in multi‐user multiple‐input multiple‐output orthogonal frequency division multiplexing (MU‐MIMO‐OFDM) wireless networks. Specifically, we propose both lower and upper bounds of the MTSP, which are asymptotically accurate in the limit of large K, the number of users. Then, we develop two iterative water‐filling algorithms to numerically solve the proposed bounds. These algorithms are with low complexity, that is, linear in K, and therefore enable the analysis of MTSP in complex channels even if K is large. Numerical results demonstrate the effectiveness of the bounds in approximating the MTSP and the high computational efficiency of the proposed iterative water‐filling algorithms. With the proposed bounds, we further numerically study scheduling power gain (SPG), which is defined as MTSP reduction achieved by scheduling resources over multiple channel blocks in time domain. We simulate the SPG in different wireless environments defined in Third Generation Partnership Project spatial channel extended model and find insignificant SPG in some cases, indicating that the benefit from scheduling over multiple channel blocks is limited and simply allocating resources within the present channel is sufficient. Our analysis on the MTSP and SPG provides guidelines on the design of resource schedulers in MU‐MIMO‐OFDM networks. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

12.
Binyue Liu 《ETRI Journal》2014,36(4):625-634
This paper studies a dual‐hop multiple‐access relay network where two independent source nodes transmit information to a common destination node with the aid of multiple single‐antenna amplify‐and‐forward relays. Each relay node is subject to an individual power constraint. We focus on the design of distributed beamforming schemes for the relays to support the transmission rate requirements of the two sources. To this end, we first characterize the achievable rate region for this network via solving a sequence of corner point optimization problems proposed in this paper. We also develop several low‐complexity suboptimal schemes in closed form. Two inner bounds of the achievable rate region are theoretically shown to be approximately optimal in two special scenarios. Finally, numerical results demonstrate the effectiveness of our proposed approaches.  相似文献   

13.
In this paper, we introduce a new wireless system architecture using space‐time block coding schemes (STBC) and non‐orthogonal multiple access (NOMA) in millimeter wave (mmWave) large‐scale MIMO systems. The proposed STBC mmWave large‐scale MIMO‐NOMA system utilizes two MIMO subarrays, transmitting data over two channel vectors to mobile users. To reduce the communication overhead and latency in the system, we utilize random beamforming with optimal coefficients at the base station and random‐near random‐far user pairing in implementing the NOMA scheme. Our results show that the proposed STBC mmWave large‐scale MIMO‐NOMA technique significantly outperforms the previous counterparts.  相似文献   

14.
To implement high‐order multiuser multiple input and multiple output (MU‐MIMO) for massive MIMO systems, there must be a feedback scheme that can warrant its performance with a limited signaling overhead. The interference‐to‐noise ratio can be a basis for a novel form of Codebook (CB)‐based MU‐MIMO feedback scheme. The objective of this paper is to verify such a scheme's performance under a practical system configuration with a 3D channel model in various radio environments. We evaluate the performance of various CB‐based feedback schemes with different types of overhead reduction approaches, providing an experimental ground with which to optimize a CB‐based MU‐MIMO feedback scheme while identifying the design constraints for a massive MIMO system.  相似文献   

15.
Channel identifiability for multiple‐input multiple‐output space–time block code (MIMO‐STBC) systems using Joint Approximate Diagonalization of Eigenmatrices (JADE) is studied in this paper. Compared with the previous blind MIMO‐STBC channel estimation methods in literature, the method proposed in this paper is more suitable for non‐cooperative scenario because it needs less prior information and can be applied to a general class of STBCs. The main contribution of the paper consists in the theoretical proof that, although the sources transmitted by different antennas of MIMO‐STBC systems are not independent, they can be retrieved from the received data by directly using JADE in most cases. The conclusion is also demonstrated by a simulation. This shows that the classical JADE algorithm can be applied to a wider range of situations rather than strictly independent sources. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The two‐dimensional (2D) block spread code division multiple access (CDMA) can avoid the uplink multiple‐access interference with low‐complexity single‐user detection in a slow fading channel and, therefore, is very attractive. In the 2D spreading, orthogonal variable spreading factor (OVSF) is used for spreading; an important problem is how to efficiently assign the limited resource of OVSF codes to users with different data rates, while meeting the requirement of quality of service in a multi‐cell environment. In this paper, it is shown that the code reuse can improve the code reuse efficiency and the proposed code reuse scheme combined with code assignment algorithm can allow flexible multi‐rate uplink transmission. The computer simulation confirms that the proposed code assignment algorithm improves the code reuse efficiency while achieving lower blocking probability than traditional CDMA. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

17.
In this paper, we propose an efficient soft‐output signal detection method for spatially multiplexed multiple‐input multiple‐output (MIMO) systems. The proposed method is based on the ordered successive interference cancellation (OSIC) algorithm, but it significantly improves the performance of the original OSIC algorithm by solving the error propagation problem. The proposed method combines this enhanced OSIC algorithm with a multiple‐channel‐ordering technique in a very efficient way. As a result, the log likelihood ratio values can be computed by using a very small set of candidate symbol vectors. The proposed method has been synthesized with a 0.13‐μm CMOS technology for a 4×4 16‐QAM MIMO system. The simulation and implementation results show that the proposed detector provides a very good solution in terms of performance and hardware complexity.  相似文献   

18.
In this paper, a new technique for the blind estimation of frequency and/or time‐selective multiple‐input multiple‐output (MIMO) channels under space‐time block coding (STBC) transmissions is presented. The proposed method relies on a basis expansion model (BEM) of the MIMO channel, which reduces the number of parameters to be estimated, and includes many practical STBC‐based transmission scenarios, such as STBC‐orthogonal frequency division multiplexing (OFDM), space‐frequency block coding (SFBC), time‐reversal STBC, and time‐varying STBC encoded systems. Inspired by the unconstrained blind maximum likelihood (UML) decoder, the proposed criterion is a subspace method that efficiently exploits all the information provided by the STBC structure, as well as by the reduced‐rank representation of the MIMO channel. The method, which is independent of the specific signal constellation, is able to blindly recover the MIMO channel within a small number of available blocks at the receiver side. In fact, for some particular cases of interest such as orthogonal STBC‐OFDM schemes, the proposed technique blindly identifies the channel using just one data block. The complexity of the proposed approach reduces to the solution of a generalized eigenvalue (GEV) problem and its computational cost is linear in the number of sub‐channels. An identifiability analysis and some numerical examples illustrating the performance of the proposed algorithm are also provided. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
In this paper, to achieve the available spatial, temporal, and frequency diversities, and also to make the system implementation feasible for high‐speed orthogonal frequency division multiplexing multiple‐input multiple‐output multiplexing, a novel layered space–time–frequency (LSTF) transmitter architecture with multiple channel encoders is proposed with each independently coded information sub‐stream being threaded in the three‐dimensional (3‐D) space–time–frequency transmission resource array. The performance of a non‐iterative receiver consisting of a maximum‐likelihood detector with QR decomposition and M‐algorithm maximum‐likelihood detection is exploited, by employing irregular low‐density parity‐check code as the channel code. The threaded distribution of each coded information sub‐stream in the proposed LSTF architecture makes it achieve the spatial, temporal, and frequency diversities the same as the conventional single‐encoder LSTF architecture where coding is applied across the whole information stream, and simulation results show that the performance of the proposed multiple‐encoder LSTF architecture is very close to that of the conventional single‐encoder LSTF architecture. However, because of the use of multiple parallel encoders/decoders with a shorter codeword length, the proposed LSTF architecture has much lower hardware processing speed and complexity than that of the conventional LSTF architecture. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
Energy efficiency (EE) is becoming more and more important in future wireless communications because of limited battery power in mobile terminals. In this paper, we compare EE of the distributed MIMO (D‐MIMO) and co‐located MIMO (C‐MIMO) in uplink systems. Taking into account both circuit and transmit power, we derive an analytical expression for EE of D‐MIMO and C‐MIMO systems in a composite Rayleigh‐lognormal channel. What is more, an optimization algorithm is proposed to get the optimal EE values while satisfying given spectral efficiency requirement for both D‐MIMO and C‐MIMO systems. Simulation results show that D‐MIMO systems are more energy effective than C‐MIMO systems when considering the realistic systems, and the optimal EE can be obtained by the proposed algorithm while satisfying given spectral efficiency requirement. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号