首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
In recent years, due to fast development of wireless sensor networks (WSNs), the numbers of nodes are increasing, and their scope of applications is continuously expanding, including environmental monitoring, military and smart home applications. The power supply, memory and computing power of wireless sensor nodes are greatly hampered in WSNs so that the WSNs are classified as a task-oriented framework. This study focused on exploring problems caused by traffic congestion on the WSNs with a large amount of flow, such as packet loss, bandwidth reduction, and waste of energy on the sensor nodes. On the other hand, a cooperative strong node mechanism is presented and named as Cooperative Strong Node Mechanism, in which a threshold is set to determine whether the node traffic is over or not. When the load exceeds, the privilege of corresponding sensor nodes is upgraded so that it can command its child nodes to change the transmission path to distribute the traffic effectively. Furthermore, when the traffic exceeds preset overall network flow, new sensor nodes are added in the network to relieve the traffic. This novel proposed mechanism can not only increase network throughput and effectively prevent the occurrence from congestion problems, but is suitable for a variety of routing protocols.  相似文献   

2.
Heterogeneous wireless sensor networks (WSNs) consist of resource‐starving nodes that face a challenging task of handling various issues such as data redundancy, data fusion, congestion control, and energy efficiency. In these networks, data fusion algorithms process the raw data generated by a sensor node in an energy‐efficient manner to reduce redundancy, improve accuracy, and enhance the network lifetime. In literature, these issues are addressed individually, and most of the proposed solutions are either application‐specific or too complex that make their implementation unrealistic, specifically, in a resource‐constrained environment. In this paper, we propose a novel node‐level data fusion algorithm for heterogeneous WSNs to detect noisy data and replace them with highly refined data. To minimize the amount of transmitted data, a hybrid data aggregation algorithm is proposed that performs in‐network processing while preserving the reliability of gathered data. This combination of data fusion and data aggregation algorithms effectively handle the aforementioned issues by ensuring an efficient utilization of the available resources. Apart from fusion and aggregation, a biased traffic distribution algorithm is introduced that considerably increases the overall lifetime of heterogeneous WSNs. The proposed algorithm performs the tedious task of traffic distribution according to the network's statistics, ie, the residual energy of neighboring nodes and their importance from a network's connectivity perspective. All our proposed algorithms were tested on a real‐time dataset obtained through our deployed heterogeneous WSN in an orange orchard and also on publicly available benchmark datasets. Experimental results verify that our proposed algorithms outperform the existing approaches in terms of various performance metrics such as throughput, lifetime, data accuracy, computational time, and delay.  相似文献   

3.
Most of the existing intrusion detection frameworks proposed for wireless sensor networks (WSNs) are computation and energy intensive, which adversely affect the overall lifetime of the WSNs. In addition, some of these frameworks generate a significant volume of IDS traffic, which can cause congestion in bandwidth constrained WSNs. In this paper, we aim to address these issues by proposing a game theory based multi layered intrusion detection framework for WSNs. The proposed framework uses a combination of specification rules and a lightweight neural network based anomaly detection module to identify the malicious sensor nodes. Additionally, the framework models the interaction between the IDS and the sensor node being monitored as a two player non-cooperative Bayesian game. This allows the IDS to adopt probabilistic monitoring strategies based on the Bayesian Nash Equilibrium of the game and thereby, reduce the volume of IDS traffic introduced into the sensor network. The framework also proposes two different reputation update and expulsion mechanisms to enforce cooperation and discourage malicious behavior among monitoring nodes. These mechanisms are based on two different methodologies namely, Shapley Value and Vickery–Clark–Grooves (VCG) mechanism. The complexity analysis of the proposed reputation update and expulsion mechanisms have been carried out and are shown to be linear in terms of the input sizes of the mechanisms. Simulation results show that the proposed framework achieves higher accuracy and detection rate across wide range of attacks, while at the same time minimizes the overall energy consumption and volume of IDS traffic in the WSN.  相似文献   

4.
In wireless sensor networks (WSNs), irregularly deployed nodes can significantly degrade the performance of the localization system. In this paper, we propose a novel localization scheme for the irregularly deployed WSNs. The basic approach is to control the transmission of location messages by using the fuzzy c-means (FCM) clustering algorithm. Next, each node selects its localization method according to the node density. Simulation studies show that the proposed approach can enhance the localization accuracy, while reducing the retransmission messages in the irregularly deployed WSNs.  相似文献   

5.
Wireless sensor networks (WSNs) have been widely investigated in the past decades because of its applicability in various extreme environments. As sensors use battery, most works on WSNs focus on energy efficiency issues (e.g., local energy balancing problems) in statically deployed WSNs. Few works have paid attention to the global energy balancing problem for the scenario that mobile sensor nodes can move freely. In this paper, we propose a new routing protocol called global energy balancing routing protocol (GEBRP) based on an active network framework and node relocation in mobile sensor networks. This protocol achieves global energy efficiency by repairing coverage holes and replacing invalid nodes dynamically. Simulation and experiment results demonstrate that the proposed GEBRP achieves superior performance over the existing scheme. In addition, we analyze the delay performance of GEBRP and study how the delay performance is affected by various system parameters.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
无线传感器网络中联合功率 控制和速率调整   总被引:1,自引:1,他引:0       下载免费PDF全文
廖盛斌  杨宗凯  程文青  刘威  熊志强 《电子学报》2008,36(10):1931-1937
 无线传感器网络本质上是能量受限的,而且,传感器节点扮演着数据收集和数据转发的双重角色.本文提出了怎样分配传感器节点的功率用于转发其它节点的数据.在节点的转发功率分配比确定后,研究了采用价格作为一种方法,刺激节点与它到数据采集节点路径上的所有节点合作.通过把无线传感器网络中数据收集和传输抽象为一个网络效用最大化问题,通过采用对偶分解技术,提出了一种迭代价格与联合功率控制和速率调整的分布式算法.实验表明,该算法能提高系统的性能,同时降低功率的消耗.  相似文献   

7.
As sensor nodes have limited sensing and transmission capability, their efficient deployment takes an important role in proper monitoring of the critical targets in various applications of wireless sensor networks (WSNs). The key issues that need to be taken care during deployment are the lesser number of deployed sensors, coverage of the targets, and connectivity between the sensor nodes. In this paper, we have proposed NSGA‐II with modified dominance to solve the node deployment problem with the aforementioned three conflicting objectives. The conventional domination method is modified for better performance of the NSGA‐II. An intelligent representation of chromosome is provided. Three conflicting objectives are derived to evaluate the chromosomes. Extensive simulation on the proposed algorithm and the statistical test, and analysis of variance (ANOVA) followed by post hoc analysis are performed.  相似文献   

8.
9.
Wireless sensor networks (WSN) are susceptible to node capture and many network levels attacks. In order to provide protection against such threats, WSNs require lightweight and scalable key management schemes because the nodes are resource-constrained and high in number. Also, the effect of node compromise should be minimized and node capture should not hamper the normal working of a network. In this paper, we present an exclusion basis system-based key management scheme called MUQAMI+ for large-scale clustered sensor networks. We have distributed the responsibility of key management to multiple nodes within clusters, avoiding single points of failure and getting rid of costly inter-cluster communication. Our scheme is scalable and highly efficient in terms of re-keying and compromised node revocation.  相似文献   

10.
Event monitoring is a common application in wireless sensor networks. For event monitoring, a number of sensor nodes are deployed to monitor certain phenomenon. When an event is detected, the sensor nodes report it to a base station (BS), where a network operator can take appropriate action based on the event report. In this paper, we are interested in scenarios where the event must be reported within a time bound to the BS possibly over multiple hops. However, such event reports can be hampered by compromised nodes in the middle that drop, modify, or delay the event report.To defend against such an attack, we propose Sem, a Secure Event Monitoring protocol against arbitrary malicious attacks by Byzantine adversary nodes. Sem provides the following provable security guarantees. As long as the compromised nodes want to stay undetected, a legitimate sensor node can report an event to the BS within a bounded time. If the compromised nodes prevent the event from being reported to the BS within the bounded time, the BS can identify a pair of nodes that is guaranteSchool of Electrical and Computer Engineeringed to contain at least one compromised node. To the best of our knowledge, no prior work in the literature can provide such guarantees.Sem is designed to use the minimum level of asymmetric cryptography during normal operation when there is no attack, and use cryptographic primitives more liberally when an attack is detected. This design has the advantage that the overall Sem protocol is lightweight in terms of the computational resources and the network traffic required by the cryptographic operations. We also show an operational example of Sem using TOSSIM simulations.  相似文献   

11.
Directed diffusion (DD) is a promising data‐centric routing scheme for wireless sensor networks (WSNs). But the heavy flooding overhead involved in interest propagation causes scalability issues when DD is applied in large scale, interactive and dynamically changing sensor networks. To solve this problem, we propose a scalable version of DD called gossip‐based scalable directed diffusion (GSDD) in this paper. GSDD uses the same routing framework as DD but integrates gossiping in interest propagation and employs dynamic regional gossiping in path exploration phase to reduce the flooding overhead. Our analysis and simulation results demonstrate that GSDD is able to reduce the data delivery cost of DD by up to 25%; thus, significantly reduce energy consumption and prolong the lifetime of sensor nodes. Therefore, GSDD overcomes the scalability problem of DD and is suitable for large‐scale WSNs. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
Wireless Personal Communications - Majority of wireless sensor networks (WSNs) are deployed in unattended environments and thus sensor nodes can be compromised easily. A compromised sensor node can...  相似文献   

13.
Constrained by the physical environments, the long‐thin topology has recently been promoted for many practical deployments of wireless sensor networks (WSNs). In general, a long‐thin topology is composed of a number of long branches of sensor nodes, where along a branch each sensor node has only one potential parent node toward the sink node. Although data aggregation may alleviate excessive packet contention, the maximum payload size of a packet and the dynamically changing traffic loads may severely affect the amount of sensor readings that may be collected along a long branch of sensor nodes. In addition, many practical applications of long‐thin WSNs demand the exact sensor readings at each location along the deployment areas for monitoring and analysis purposes, so sensor readings may not be aggregated when they are collected. This paper proposes a lightweight, self‐adaptive scheme that designates multiple collection nodes, termed lock gates, along a long‐thin network to collect sensor readings sent from their respective upstream sensor nodes. The self‐adaptive lock gate designation scheme balances between the responsiveness and the congestion of data collection while mitigating the funneling effect. The scheme also dynamically adapts the designation of lock gates to accommodate the time‐varying sensor reading generation rates of different sensor nodes. A testbed of 100 Jennic sensor nodes is developed to demonstrate the effectiveness of the proposed lock gate designation scheme. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Application reconfiguration is essential to achieving flexibility and adaptability of wireless sensor networks (WSNs) used in environment monitoring. In this paper, we present an integrated reconfiguration scheme (IRS) for implementing environment adaptive application reconfiguration (EAAR) in WSNs. In our scheme, application reconfiguration is implemented with the push‐based paradigm for densely distributed nodes and the cluster‐based hybrid reconfiguration (CHR) paradigm for sparsely distributed nodes. We demonstrate the energy‐efficiency and scalability of our scheme by analyzing the energy consumption based on a randomly deployed sensor network. Moreover, we derive the density threshold of reconfiguration nodes (RNs) for determining if the nodes are densely or sparsely distributed, and choose the mode of operation for IRS. We use extensive simulation experiments to demonstrate the effectiveness of our scheme. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
In many applications of wireless sensor networks, sensor nodes are manually deployed in hostile environments where an attacker can disrupt the localization service and tamper with legitimate in-network communication. In this article, we introduce Secure Walking GPS, a practical and cost effective secure localization and key distribution solution for real, manual deployments of WSNs. Using the location information provided by the GPS and inertial guidance modules on a special master node, Secure Walking GPS achieves accurate node localization and location-based key distribution at the same time. We evaluate our localization solution in real deployments of MicaZ. Our experiments show that 100% of the deployed nodes localize (i.e., have a location position) and that the average localization errors are within 1–2 m, due mainly to the limitations of the existing commercial GPS devices. Our further analysis and simulation results indicate that the Secure Walking GPS scheme makes a deployed WSN resistant to the Dolev-Yao, the wormhole, and the GPS-denial attacks, the scheme is practical for large-scale deployments with resource-constrained sensor nodes and has good localization and key distribution performance.  相似文献   

16.
Congestion control in wireless sensor networks (WSNs) is crucial. In this article, we discuss congestion control and the adaptive load-aware problem for sensor nodes in WSNs. When the traffic load of a specific node exceeds its the available capacity of the node, a congestion problem occurs because of buffer memory overflow. Congestion may cause serious problems such as packet loss, the consumption of power, and low network throughput for sensor nodes. To address these problems, we propose a distributed congestion control protocol called adaptive load-aware congestion control protocol (ALACCP). The protocol can adaptively allocate the appropriate forwarding rate for jammed sensor nodes to mitigate the congestion load. Through the buffer management mechanism, the congestion index of neighboring sensor nodes, and an adjustment of the adaptive forwarding rate, the degree of congestion is alleviated markedly. The performance in allocating the forwarding rate effectively to neighboring sensor nodes also improves. The ALACCP can avoid packet loss because of traffic congestion, reduce the power consumption of nodes, and improve the network throughput. Simulation results revealed that the proposed ALACCP can effectively improve network performance and maintain the fairness of networks.  相似文献   

17.
军事防御、灾害监测与救援等危险/恶劣环境监测是无线传感器网络的典型应用。在此面向危险/恶劣环境监测需求,设计并构建移动多Sink无线传感器网络监测系统,实现环境信息感知、便携式移动指挥、事件定位、移动用户生理监护、多模态(语音、图像、文字等)交互等功能。实验测试结果表明,当网络中存在2个移动Sink节点时,网络平均延时小于100 ms,网络丢包率小于6%,可满足网络实时性要求不高的应用。  相似文献   

18.
Sensor node energy conservation is the primary design parameters in wireless sensor networks (WSNs). Energy efficiency in sensor networks directly prolongs the network lifetime. In the process of route discovery, each node cooperates to forward the data to the base station using multi‐hop routing. But, the nodes nearer to the base station are loaded more than the other nodes that lead to network portioning, packet loss and delay as a result nodes may completely loss its energy during the routing process. To rectify these issues, path establishment considers optimized substance particle selection, load distribution, and an efficient slot allocation scheme for data transmission between the sensor nodes in this paper. The selection of forwarders and conscious multi‐hop path is selected based on the route cost value that is derived directly by taking energy, node degree and distance as crucial metrics. Load distribution based slot allocation method ensures the balance of data traffic and residual energy of the node in areal‐time environment. The proposed LSAPSP simulation results show that our algorithm not only can balance the real‐time environment load and increase the network lifetime but also meet the needs of packet loss and delay.  相似文献   

19.
Wireless sensor networks (WSNs) consist of sensor nodes that broadcast a message within a network. Efficient broadcasting is a key requirement in sensor networks and has been a focal point of research over the last few years. There are many challenging tasks in the network, including redundancy control and sensor node localization that mainly depend on broadcasting. In this paper, we propose a broadcasting algorithm to control redundancy and improve localization (BACRIL) in WSNs. The proposed algorithm incorporates the benefits of the gossip protocol for optimizing message broadcasting within the network. Simulation results show a controlled level of redundancy, which is up to 57.6% if the number of sensor nodes deployed in a 500 m×500 m area are increased from 50 to 500.  相似文献   

20.
Wireless sensor networks (WSNs) typically consist of a large number of battery‐constrained sensors often deployed in harsh environments with little to no human control, thereby necessitating scalable and energy‐efficient techniques. This paper proposes a scalable and energy‐efficient routing scheme, called WCDS‐DCR, suitable for these WSNs. WCDS‐DCR is a fully distributed, data‐centric, routing technique that makes use of an underlying clustering structure induced by the construction of WCDS (Weakly Connected Dominating Set) to prolong network lifetime. It aims at extending network lifetime through the use of data aggregation (based on the elimination of redundant data packets) by some particular nodes. It also utilizes both the energy availability information and the distances (in number of hops) from sensors to the sink in order to make hop‐by‐hop, energy‐aware, routing decisions. Simulation results show that our solution is scalable, and outperforms existing schemes in terms of network lifetime. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号