首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
TB43 96040022纯净化真空弧沉积非晶硅薄膜/邹积岩,程仲元,杨磊(华中理工大学电力工程系)11微细加工技术一1996,(1)一53一59 文章阐述了真空电弧沉积的各种净化方法,并讨论了纯净化的真空电弧在非晶硅膜层沉积方面的应一2一用,包括在制造太阳能电池方面的应用前景.图4参5(许)理过程中的界面扩散反应机理,界面反应动力学过程及界面反应产物.图9参8(许)TB43 96040023在柔性基上真空蒸镀rro膜/程知群(合肥工业大学)lj光电子技术一1 996,]6(1)一sx~54 研究了在柔性基上真空蒸镀ITO薄膜的实验装置和工艺参数.给出了最佳工艺参数和实验结果.图3…  相似文献   

2.
多弧离子镀TiN和(TiZrCr)N膜中宏观颗粒的SEM分析   总被引:2,自引:0,他引:2  
宏观颗粒是阻碍电弧离子镀广泛应用的障碍。它们镶嵌在膜层中,或散布在膜层表面。引起薄膜微区成分和结构的突变,对于工具镀来讲不一定有害,而对于高档模具和装饰来讲无疑是有害的。由于真空电弧阴极斑点局部温度高达8000~40000K,阴极表面的微小熔池产生喷射,最终形成这些宏观颗粒。许多方法用来减少和消除真空电弧离子镀中的大颗粒。本文比较了在直流偏压、直流迭加脉冲偏压和磁场过滤电弧作用下的宏观颗粒特点。实验方法用4弧源真空电弧离子镀设备进行TiN膜的沉积,用Zr、Cr、Ti靶进行(ZrCrTi)N复合膜的共沉积。工艺条件为:电弧电流80…  相似文献   

3.
新型石墨舟等离子体清洗设备能有效减少清洗时间,减少了非晶硅沉积工艺中磷烷的用量,提高了隧穿氧化层钝化接触(TOPCon)电池转换效率,具有很大的竞争优势。研究了等离子体清洗工艺参数对电池转换效率的影响,得到了最佳的石墨舟等离子体清洗工艺参数,即:石墨舟温度300℃、清洗时间150 min,将非晶硅沉积工艺中磷烷的流量减半,制备的TOPCon电池转换效率达24.154%,比湿法设备高0.033%。  相似文献   

4.
陈海力  沈鸿烈  张磊  杨超  刘斌 《电子器件》2011,34(4):370-373
以超白玻璃为衬底,采用热丝化学气相沉积法沉积初始非晶硅膜,经自然氧化形成二氧化硅层,最后利用磁控溅射 法在不同衬底温度下沉积铝膜,制备了glass/Si/SiO/Al叠层结构并对其进行铝诱导晶化形成多晶硅薄膜.用X射线衍射,光学显微镜和拉曼光谱对样品进行了分析.结果表明,铝诱导晶化制备的多晶硅薄膜的晶粒大小随着铝膜沉积...  相似文献   

5.
本文对TFT在栅极绝缘层和非晶硅膜层沉积过程中,透明电极ITO成分对膜层的污染和TFT电学性质的影响进行分析研究。通过二次离子质谱分析和电学测试设备对样品进行分析。ITO成分会对PECVD设备、栅极绝缘层和非晶硅膜层产生污染,并会影响TFT的电学特性。建议采用独立的PECVD设备完成ITO膜层上面的栅极绝缘层和非晶硅膜层的沉积,并且对设备进行周期性清洗,可降低ITO成分的污染和提高产品的电学性能。  相似文献   

6.
金刚石膜是一种集众多优异性能于一身的新材料,尤其是其热导率高、绝缘性能好以及微波介电损耗低等特点,使金刚石膜在微波电真空器件领域有着重要的应用前景。目前,以微波等离子体化学气相沉积(MPCVD)方法制备高品质金刚石膜的技术已趋向成熟。本文将针对微波电真空器件这一应用背景,简要介绍国内外高品质金刚石膜MPCVD沉积技术的发展现状,进而对金刚石膜材料应用于微波电真空器件领域的一些典型实例进行简单的介绍。  相似文献   

7.
为了获得具有一定厚度的四面体非晶碳薄膜,利用过滤阴极真空电弧(FCVA)沉积技术,通过交替改变衬底偏压的方法制备了多层四面体非晶碳(ta?鄄C)薄膜。多层膜由富sp2子膜层Ai与富sp3子膜层Bi交替组成(i=1,2,3),各子膜层厚度比dAi/dBi约为1.0,总的膜厚约为1 m。根据Stoney公式计算多层膜的各子膜层压应力呈交替起伏变化。多层四面体非晶碳膜在500 ℃以下的真空退火处理后,可见光Raman谱表明,多层膜的富sp3杂化结构基本保持不变,纳米压痕测量的薄膜硬度与杨氏模量略微增加,纳米划擦实验表明,多层膜具有优良的耐磨性与附着性。因此,多层ta?鄄C膜具有优良的力学性能和热稳定性,是一种优异的航空航天用光学元件的表面保护膜。  相似文献   

8.
纳米洋葱状富勒烯(NanoOnion-like Fullerenes,NOLFs)作为富勒烯家族的一个新成员自1992年被发现以来由于其独特的中空笼状结构和潜在的应用前景引起研究者广泛的关注。目前,制备NOLFs的主要方法有电弧放电法、等离子体法,化学气相沉积法和真空热处理法。本文以金属Ni为催化剂,石墨粉为碳源探讨了真空热处理条件下温度对NOLFs结构形态的影响。  相似文献   

9.
在真空断路器中,当电流达到几千安时会产生电弧集聚,我们使用两种触头来克服由于这种现象而产生的不良后果。横磁触头产生的横磁场使集聚电弧旋转,电有量均匀地分布在触头表面。纵磁触头可以防止电弧集聚到很高的能量。为了提高这两种真空断路器的开断容量,了解电流零点附近真空电弧等离子体(即真空电弧)的特性和变化过程,如等离子体的密度、等离子体的衰变以及能量就十分重要。在本文中,我们主要是用延迟场分析仪来研究电流过零前最后3ms内电弧电流的有效值达到了7.5kA时真空电弧等离子体中离子能量的分布状况。研究发现:横磁和纵磁触头的电弧离子能量存在着明显的差别。在电流超过5kA时,这两种触头上电弧离子能量的分布接近于麦克期韦(Maxwellian)分布,这是一种由离子碰撞决定的等离子体的特有分布。也就是说,在电流接近零点时,横磁触头中电弧离子的运动具有很强的方向性,而纵磁触头中能量的分布却明显受到离子碰撞的影响。  相似文献   

10.
介绍了产生等离子几种放电方式(如直流二极放电,射频放电,真空辉光放电,真空弧光放电等)与等离子体相关的溅射沉积,离子镀沉积等常用的真空沉积技术及其在薄膜 备中的应用。  相似文献   

11.
聚酰亚胺衬底柔性非晶硅薄膜电池集成串联组件的研究   总被引:2,自引:2,他引:0  
研究了柔性Si基薄膜太阳电池集成串联组件的制备与关键技术。对导电栅线在柔性薄膜太阳电池集成串联组件中的重要性进行了模拟计算,对柔性薄膜太阳电池激光刻蚀进行了理论分析与实验优化,并对柔性Si基薄膜太阳电池集成串联组件进行了设计与研制。在聚酰亚胺(PI)衬底上,通过卷对卷磁控溅射与卷对卷等离子增强化学气相沉积(PECVD)依次沉积复合背反射层Ag/ZnO、Si基薄膜层和透明导电膜层,采用激光刻蚀与丝网印刷工艺相结合实现集成串联,制备了柔性非晶Si(a-Si)薄膜太阳电池集成串联组件。柔性单结集成串联组件有效面积转换效率达到了4.572%(AM0),开路电压Voc=5.065V,填充因子FF=0.552。  相似文献   

12.
The a -Si:H film with different thickness smaller than 1μm were deposited by plasma enhanced chemical vapor deposition (PECVD) under the optimum deposition contitions.The effect of diferent thickness on film properties is analyzed.The results show that,with the increase of the film thickness,the dark conductivity ,photoconductivity and threshold voltage increase,the optical gap and peak ratio of TA to TO in the Raman spectra decrease, the refractive index keeps almost constant, and the optical absorption coefficient and current ration of on/off state first maximize and then reduce.  相似文献   

13.
It is established that layered a-Si:H films grown by cyclic deposition with by-layer annealing in hydrogen plasma are characterized by high photosensitivity, which, at room temperature, exceeds by more than an order of magnitude the photosensitivity of regular nondoped a-Si:H films grown by deposition in the plasma of an HF glowing discharge. The high photosensitivity is determined by small dark conductance and the high photoconductance of layered films in the range of room temperature. It is demonstrated that this can be stipulated by the existence of sensitizing levels, related with higher oxygen concentrations at layer’s interface and the low concentration of broken silicon bonds in the depth of layers with a more ordered structure.  相似文献   

14.
A method for rapid deposition of amorphous silicon (a-Si) films in a low-frequency (55 kHz) glow discharge plasma is suggested. The structure and electrophysical properties of the films were investigated. It is shown that the use of the low-frequency discharge makes it possible to independently control the stability and concentration of recombination centers in a-Si. This fact, along with the possibility of fabricating heterostructures with a low density of surface states, makes this method promising for mass production of a-Si-based electron devices.  相似文献   

15.
A process for transferring patterns into HgCdTe epilayers using a hydrogenated amorphous silicon (a-Si:H) photomask has been demonstrated. a-Si:H films were grown using plasma enhanced chemical vapor deposition (PECVD). A latent image of a projected mask pattern was created at the a-Si:H surface by ultraviolet enhanced oxidation in the load lock of the PECVD vacuum chamber. This image was transformed into a mask by hydrogen plasma removal of the unexposed areas. A hydrogen plasma etch selectivity value greater than 500:1 for oxide and a-Si:H allows patterns as thick as 700 nm to be generated. a-Si:H masks were used to create arrays of mesas in planar HgCdTe epilayers by etching in an electron cyclotron resonance (ECR) plasma reactor. Etch selectivity between a-Si:H and HgCdTe during an ECR hydrogen plasma etch was measured to be greater than 18:1. RoA values > 103 were obtained for mid-wavelength infrared diodes made from HgCdTe heterojunctions using a-Si:H masks.  相似文献   

16.
We have demonstrated that the performance of the inverted staggered, hydrogenated amorphous silicon thin film transistor (a-Si:H TFT) is improved by a He, H2, NH3 or N2 plasma treatment for a short time on the surface of silicon nitride (SiN x) before a-Si:H deposition. With increasing plasma exposure time, the field-effect mobility increase at first and then decrease, but the threshold voltage changes little. The a-Si:H TFT with a 6-min N2 plasma treatment on SiNx exhibited a field effect mobility of 1.37 cm2/Vs, a threshold voltage of 4.2 V and a subthreshold slope of 0.34 V/dec. It is found that surface roughness of SiNx is decreased and N concentration in the SiN x at the surface region decreases using the plasma treatment  相似文献   

17.
以SiH4和CH4为源气体,采用射频等离子增强化学气相沉积(RF-PECVD)方法,通过改变CH4/SiH4流量比和射频功率制备非化学计量比氢化非晶碳化硅(a-Si1-x Cx:H)薄膜.采用傅里叶转换红外光谱(FTIR)和紫外-可见(UV-Vis)光谱等测试手段,对薄膜的成键情况及其对光学带隙的影响进行了研究分析.结...  相似文献   

18.
张华  花国然  陈宏 《应用激光》2012,32(5):412-415
以单晶硅(111)为衬底,以等离子体增强化学气相沉积技术制备的非晶硅薄膜为前驱物,采用YAG激光晶化技术实现从非晶硅薄膜到纳米晶硅薄膜的相变过程。采用X射线衍射仪和原子力显微镜对YAG激光晶化薄膜进行了表征与分析。结果表明:薄膜的晶粒尺寸在纳米级;随着激光脉冲频率的增加,晶粒尺寸先变大后变小,其最佳结晶频率区间为10~12 Hz。  相似文献   

19.
Composites consisting of hydrogenated amorphous silicon (a-Si: H, inorganic) and zinc phthalocyanine (ZnPc, organic) were prepared by vacuum evaporation of ZnPc and sequential deposition amorphous silicon via plasma enhanced chemical vapor deposition (PECVD). The optical and electrical properties of the composite film have been investigated. The results demonstrate that ZnPc can endure the temperature and bombardment of the PECVD plasma and photoconductivity of the composite film was improved by 89.9% compared to pure a-Si: H film. Electron mobility-lifetime products/lr of the composite film were increased by nearly one order of magnitude from 6.96 × 10^-7 to 5.08 × 10^-6 cm2/V. Combined with photoconductivity spectra of the composites and pure a-Si: H, we tentatively elucidate the improvement in photoconductivity of the composite film.  相似文献   

20.
成功地利用传统的等离子增强化学汽相沉积技术制备了纳米晶硅。为了提高生长初期的结晶速度,在PECVD设备和干法刻蚀设备中,利用H2/SF6等离子体对Si Nx薄膜表面进行处理。在制备纳米/微米晶粒结晶硅时常用的氢气稀释条件下,沉积得到了纳米晶硅。利用XRD和TEM观察了氢化纳米晶硅(nc-Si∶H)的微结构,发现实验成功得到了小于10 nm的晶体硅。为了检测结构和电学特性,测试了纳米晶硅薄膜的亮态和暗态电导率。室温下,电导率从非晶硅的10-10S/cm增加到10-5S/cm。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号