共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
泡孔结构对开孔泡沫铝压缩力学性能的影响 总被引:1,自引:0,他引:1
采用渗流工艺制备出不同孔径的均匀孔结构和混合孔结构的开孔泡沫铝,研究了孔结构(孔径大小及其比例分布)对开孔泡沫铝压缩力学性能的影响。结果表明:对于均匀孔径的开孔泡沫铝而言,在相对密度不变的条件下,孔径大小对其压缩性能几乎没有影响;而当泡沫铝的孔结构是由不同尺寸的孔相混合时,则大孔与小孔的相对体积比对其力学性能,特别是弹性模量具有较大影响,大、小孔径按适当比例混合可使开孔泡沫铝相对密度降低而刚度显著升高。 相似文献
3.
泡沫铝吸声性能的研究 总被引:4,自引:0,他引:4
本文通过测试泡沫铝的吸声系数来研究泡沫铝的吸声性能。结果表明,泡沫铝具有较好的吸收性能,其吸声系数对于频率很敏感,大约在1000Hz时吸声系数出现一个峰值。吸声系数随孔结构的变化有一定的规律性。 相似文献
4.
SiC颗粒增强铝基复合材料薄板的力学性能 总被引:7,自引:2,他引:7
研究了粉末冶金法制备的SiC颗粒增强铝基复合材料薄板的常温及高温力学性能,结果表明,铝基复合材料薄板在常温下具有较高的强度,薄板性能基本呈各向同性,其断裂机制主要为颗粒从基体脱粘,同时有少量颗粒破碎。随着温度的升高,复合材料板材强度逐渐下降,延伸率增大。在200℃时仍能保持较高的强度和较好的综合性能,其抗拉强度达370MPa,屈服强度达243MPa,延伸率达11.3%。 相似文献
5.
6.
泡沫铝的气流噪声降噪性能 总被引:3,自引:1,他引:3
研究了通孔泡沫铝孔结构及成形方法对气流冲击所产生噪声的降噪性能的影响.结果表明,泡沫铝在0.125~16 kHz范围内均具有较好的降噪作用,平均降噪效果可达10~35 dB,最高可达48 dB.其降噪效果受孔结构影响,孔径为0.1 mm,孔隙率为60%泡沫铝试样的降噪效果最佳. 相似文献
7.
SiC颗粒增强铝基复合材料既保持了金属特有的良好延展性、传热等特点,又具有陶瓷的耐高温性、耐磨损的要求。综述了SiC颗粒增强铝基复合材料的物理及力学性能,SiC颗粒增强铝基复合材料强化的物理模型主要有两种,即剪切滞后模型与Eshelby理论。 相似文献
8.
以6061铝合金为原料、Ti H2为发泡剂,通过熔体发泡法制备闭孔泡沫铝。采用正交试验探究Ca添加量、Ti H2添加量与添加温度,以及发泡保温时间对泡孔结构的影响。采用XRD检测泡壁物相组成,SEM观察微观组织形态,并对6061泡沫铝的压缩性能进行研究。结果表明:泡沫铝孔壁由α-Al基体、Al4Ca和Al20Ca Ti2组成。确定6061泡沫铝最佳制备工艺为:Ca添加量2%,Ti H2添加量0.4%,Ti H2添加温度650℃,发泡保温时间5 min,该工艺下屈服应力为2.38 MPa,吸能量为1.62 MJ/m3。 相似文献
9.
10.
SiCP增强泡沫铝基复合材料的制备工艺研究 总被引:4,自引:1,他引:4
将SiC颗粒增强铝基复合材料的制备技术与泡沫铝熔体发泡技术相结合,探索了制备SiC颗粒增强泡沫铝基复合材料的工艺方法。讨论了SiC颗粒与铝基体之间存在的润湿性,界面反应以及SiC颗粒在熔体中沉降等问题,通过选择合适的合金成分,对SiC颗粒进行预处理,采用特定的搅拌和发泡等一系列工艺方案成功地予以解决。在熔体发泡过程中,通过严格控制发泡温度、搅拌速度和搅拌时间等工艺参数,制得了孔隙率基本可调,SiC颗粒和孔洞分布均匀的泡沫铝样品。 相似文献
11.
12.
SiC颗粒增强铝基复合材料制造工艺及性能 总被引:1,自引:0,他引:1
将20-40μm的SiC颗粒(SiCp)经预处理后在真空中与铝共熔,然后冷至铝合金固液两相区搅拌,可明显改善SiCp/基体间的润湿性和增强相分布的均匀性;加镁也可改善其润湿性,该材料的强度是铝合金的二倍,弹性模量也提高两倍以上。 相似文献
13.
碳酸镁发泡剂制备泡沫铝的研究 总被引:2,自引:0,他引:2
选用ZL102合金为主体原料,钙为增粘剂,碳酸镁为发泡剂,对用熔体直接发泡法制备泡沫铝进行了研究.结果表明,采用碳酸镁作为发泡剂,钙作为增粘剂,可以制备出低密度、高孔隙率的泡沫铝;随着碳酸镁或钙加入量的增加,泡沫铝的密度逐渐减小;但当碳酸镁或钙加入量超过1%时,泡沫铝的密度有所增加;泡沫铝平均孔隙率的变化规律与密度的变化规律相反. 相似文献
14.
SiC颗粒增强铝基复合材料的显微组织与力学性能 总被引:2,自引:3,他引:2
采用压铸浸渗法制备了体积分数为50%的SiC/Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn耐热铝基复合材料.通过拉伸测试与组织观察,研究了高体积分数SiC颗粒增强对基体合金的显微组织与力学性能影响.结果表明,在基体Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn合金中掺入高体积分数的SiC颗粒后,复合材料的时效硬化与拉伸性能得到了大幅度的提高,185 ℃峰时效处理后的抗拉强度从356 MPa增大到520 MPa.SiC/Al-5.3Cu-0.8Mg-0.6Ag-0.5Mn复合材料的组织致密,分布均匀,其断裂方式包括界面脱开、基体韧断和增强体开裂.高体积分数SiC颗粒的增强并不改变基体合金的时效析出过程,析出相由Ω相和少量θ'相组成,但SiC颗粒与基体之间发生了界面反应,生成了纳米级的Al4C3化合物. 相似文献
15.
采用搅拌摩擦加工制备SiC颗粒增强铝基复合材料,研究搅拌次数对复合层晶粒尺寸、硬度、拉伸及磨损性能的影响。结果表明,搅拌加工时添加SiC颗粒可提高复合层的硬度、耐磨性,但会降低其强度。随着搅拌次数的增加,复合材料硬度得到提高,添加SiC颗粒的试样经4道次搅拌后搅拌区平均硬度130 HV,而未添加颗粒时为118 HV。添加颗粒试样搅拌4次后,抗拉强度比搅拌1次试样强度明显提高,可达360.6 MPa,可达铝合金母材的68.5%。添加颗粒能够提高复合层的耐磨性,未添加颗粒时复合层摩擦系数为0.6,相比添加颗粒时仅为0.5。随着搅拌次数的增加,搅拌区晶粒细化程度得以提高,SiC颗粒分布更加均匀。 相似文献
16.
17.
泡沫铝的动态力学性能研究 总被引:4,自引:0,他引:4
采用分离式霍普金森压杆(SHPB)技术,研究了孔隙率对泡沫铝在高应变速率(700s(-1)~~2600s(-1)~)条件下力学性能的影响,并与准静态条件下(1×10(-3)~s(-1)~)的性能进行了对比。实验发现泡沫铝在准静态和动态条件下呈现逐层破坏的特征,从而在应力-应变曲线上出现一平台区;由于铝合金本身存在的应变速率敏感性和多孔材料中气体的作用,使泡沫铝的平台应力随应变速率的增加而增大,当孔隙率较低时,增加尤为明显;泡沫铝的应变速率敏感度随应变的变化而变化。 相似文献
18.
铝熔体泡沫化过程中孔结构的控制 总被引:8,自引:0,他引:8
在大量试验研究的基础上,探索了铝熔体泡沫过程中控制泡沫铝孔径、孔隙率等结构参数的工艺方法,研究了发泡剂加入量,搅拌及保温时间等对孔结构的影响。 相似文献
19.
基于吹气法制备A356基泡沫铝工艺,采用高速搅拌并分批连续加入粉末的方式,避免熔体中颗粒分布不均匀的问题;采用静置吹气头通入压缩空气发泡,通过设计和控制气路,制备出不同孔径、不同壁厚、稳定的泡沫铝.结果表明A356基泡沫铝是一种典型的塑性泡沫材料,泡孔呈十四面体形状,泡壁较薄,厚度小于150μm,可控的泡孔平均直径范围很宽,为10~25mm;泡沫铝在致密化阶段的塑性变形量可达70%以上;不作任何预处理的泡沫铝在高频率声波下的吸声系数可达0.9以上;在泡沫样品后设置0~70mm空腔,其在低频率声波下的吸声性能显著提高;所制备的泡沫铝具有较好的声学性能和力学性能. 相似文献
20.
泡沫铝消音性能的初步研究 总被引:4,自引:0,他引:4
研究了包沫铝消音性能及其随孔隙结构及成形方法的变化情况。结果表明:泡沫铝在0.125~16kHz范围内均具有较好的消音作用;其消音效果受其孔隙结构和成形方法所影响,孔径为1.6~3.2mm和0.63~0.8mm试样的消音效果最佳,孔隙率大的消音效果更优,成形体法泡沫铝的消音性能明显优于散粒子法泡沫铝。 相似文献