首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了改善现有Ag/Sn O2电器触头材料的机械性能和电气使用性能,制备了以Ag为基体、Sn O2为增强相、Ce O2为添加剂的一种新型Ag/Sn O2/Ce O2电器触头材料。首先,采用液相原位化学法制备了弥散分布的纳米Sn O2-Ce O2复合粉末,结合微观分析手段测试,研究了稀土氧化物Ce O2对Sn O2相成分和微观结构的影响。接着,采用粉末冶金工艺制备了新型Ag/Sn O2/Ce O2电器触头材料,并对材料的物理和机械性能以及温升、额定接通与分断能力等电气使用性能进行了测试和分析。测试结果表明,本研究制备的新型Ag/Sn O2/Ce O2电器触头材料的电气使用性能优于国内现有的Ag/Sn O2触头材料。  相似文献   

2.
描述了一种制备Ag/Sn O2电接触材料(Sn O2的质量分数为12%)的新方法。首先采用共沉淀法制备Ag-Sn O2纳米复合粉体(Sn O2的质量分数为42%)并对该Ag-Sn O2纳米复合粉体进行了表征。XRD结果表明制备的复合粉体由纯立方相的Ag和四方金红石相的Sn O2组成;SEM及TEM结果表明,纳米Sn O2与纳米Ag颗粒均匀弥散分布在复合粉体中;并借助于TG-DTA热分析对纳米复合粉体前驱体的制备过程进行了分析。然后,将Ag-Sn O2纳米复合粉体与Ag粉混合,采用粉末冶金法制备成Ag/Sn O2电接触材料,并对制备的Ag/Sn O2电接触材料进行了表征。结果表明,由于纳米Sn O2在Ag基体中弥散分布,制备的材料的物理性能如密度、硬度及电导率比普通工艺制备的材料好。  相似文献   

3.
描述了一种制备Ag/Sn O2电接触材料(Sn O2的质量分数为12%)的新方法。首先采用共沉淀法制备Ag-Sn O2纳米复合粉体(Sn O2的质量分数为42%)并对该Ag-Sn O2纳米复合粉体进行了表征。XRD结果表明制备的复合粉体由纯立方相的Ag和四方金红石相的Sn O2组成;SEM及TEM结果表明,纳米Sn O2与纳米Ag颗粒均匀弥散分布在复合粉体中;并借助于TG-DTA热分析对纳米复合粉体前驱体的制备过程进行了分析。然后,将Ag-Sn O2纳米复合粉体与Ag粉混合,采用粉末冶金法制备成Ag/Sn O2电接触材料,并对制备的Ag/Sn O2电接触材料进行了表征。结果表明,由于纳米Sn O2在Ag基体中弥散分布,制备的材料的物理性能如密度、硬度及电导率比普通工艺制备的材料好。  相似文献   

4.
以化学共沉淀法合成的锡酸铋(Bi2Sn2O7)为改性组元,采用座滴法研究了Bi2Sn2O7掺杂对Ag/SnO2界面润湿角的影响规律,并利用机械合金化技术结合成型烧结工艺制备了Ag/SnO2(x)-Bi2Sn2O7(y)电接触材料.采用扫描电镜、X射线衍射仪、视频光学接触角测量仪、电阻测试仪、硬度计以及密度计等表征手段对...  相似文献   

5.
以SnO2、Bi2Sn2O7为增强相粉体,化学银粉为基体相,采用高能球磨辅助常压烧结工艺制备出系列Bi2Sn2O7改性SnO2增强银基复合材料。考察了Bi2Sn2O7含量、球磨时间、烧结制度对Ag/SnO2-Bi2Sn2O7复合材料物理性能的影响规律。结果表明:随着球磨时间从1h延长至12h,Ag/SnO2-(6 wt.%) Bi2Sn2O7复合粉体从颗粒态向片状结构发生转变,Ag/SnO2-(6 wt.%) Bi2Sn2O7复合材料的电阻率呈逐渐上升趋势而密度呈不断下降趋势。烧结温度的提升和Bi2Sn2O7掺杂量的增加均有助于降低Ag/SnO2-Bi2Sn2O7复合材料的电阻率,且当Bi2Sn2O7掺杂量为12 wt.%、烧结温度900℃时,样品Ag/ (12 wt.%) Bi2Sn2O7的电阻率达到最佳值2.24 μΩ·cm。循环50次的初期电弧烧蚀试验分析可知,相比于纯Ag/SnO2而言,Bi2Sn2O7改性样品表面的烧损面积并未快速扩展至整个表面,且当Bi2Sn2O7含量为6 wt%时,Ag/SnO2-(6 wt.%) Bi2Sn2O7样品表面的烧损面积最小。而当Bi2Sn2O7含量为12 wt.%时, Ag/ (12 wt.%) Bi2Sn2O7表面烧蚀区出现了飞溅现象,这可能归因于其较低的表面硬度(82.38HV0.3)。  相似文献   

6.
AgSnO2电接触材料应用日益广泛,生产技术日渐成熟。经过对比分析AgSnO2粉末制备方法、Ag Sn合金预氧化理论和工艺、AgSnO2材料加工、添加剂应用等,认为合金雾化制粉-预氧化-等静压成型-热挤压-轧制、拉拔是适合AgSnO2电接触材料产业化生产的工艺路线。  相似文献   

7.
采用基于密度泛涵理论的第一性原理平面波赝势方法,在一般梯度近似下计算Ag6Sn2O4晶体的布居和键长,分析其分波态密度以及电荷等密度分布,研究Ag6Sn2O4晶体的电子结构和成键特性。结果表明:在发生原位反应之后,生成的Ag6Sn2O4晶体中主要是O原子的2p电子轨道与Sn原子的5s、5p电子轨道中的电子成键结合,其中O原子和Sn原子之间的成键能力要强于O原子和Ag原子之间的成键能力,锡氧结合生成SnO2颗粒镶嵌在银的基体中,与实验结果比较吻合。  相似文献   

8.
采用化学共沉淀法制备了一系列不同比例的Sn O2掺杂YSZ陶瓷粉体,并无压烧结制备了致密的块体材料。通过XRD和电子探针分析了材料的结构和成分组成,确定了Sn O2的固溶度以及t'相稳定的成分范围。采用显微压痕法和超声法测试了样品的硬度、断裂韧性和弹性模量。实验结果表明,Sn O2掺杂保持了t'相YSZ的稳定性,同时提高了YSZ的力学性能。另外考虑到热导率的降低,Sn O2掺杂有望提高YSZ热障涂层材料的综合性能。  相似文献   

9.
对比分析了Ag/Cu、Ag/BZn15-20两种丝材在机械性能和电学性能方面的差异以及由此造成的加工工艺的不同,试验并分析了控制壁厚和复合界面扩散对材料复合质量和加工性能的影响因素,在此基础上制订出合适的拉拔和软化退火工艺。  相似文献   

10.
为探究掺杂组元类型及含量对多元复合改性Ag/SnO2In2O3触点材料的内氧化法制备工艺、微观结构、显微硬度、温升、电寿命等电气性能的影响规律,采用中频熔炼-铸造工艺制备了改性AgSnIn合金,通过内氧化法制备了多元复合改性Ag/SnO2In2O3触点材料。利用AC-4电寿命型式试验平台对触点材料进行温升、电寿命性能评价。研究表明,改性Ag/SnO2In2O3材料的内氧化工艺优选参数为700 ℃,5 MPa,48 h。相比于Ni、Cu或Zn二元改性而言,Ni-Cu-Zn三元改性AgSn合金内部存在较大的微应变,相应的改性Ag/SnO2In2O3材料的显微硬度随着In元素含量的降低呈先上升后急剧下降。由0.47 wt.%镍,0.4 wt.%铜,0.43 wt.%锌和2.1 wt.%铟元素组成的改性AgSnIn合金可实现完全内氧化,相应的改性Ag/SnO2In2O3材料表现为最佳的显微硬度(1382.49 MPa)、最长服役寿命(28989次)和合适的温升(43.69 K),这归因于显微结构中存在较大的微应变(19×10-3)和起到强化效应的晶界组织。经分析发现,在特定的In含量比例范围2.1~3.1 wt.%,改性Ag/SnO2触点材料的电寿命循环周期与显微硬度大小之间呈正相关性,这一结果将为Ag/SnO2触点材料的配方设计与电寿命性能预测提供新思路。  相似文献   

11.
不同钎料对QFP焊点可靠性影响的有限元分析   总被引:3,自引:4,他引:3       下载免费PDF全文
张亮  薛松柏  卢方焱  韩宗杰 《焊接学报》2007,28(10):45-48, 52
采用有限元方法研究了不同钎料钎焊QFP器件焊点的可靠性.结果表明,焊点根部、焊趾部位以及引线和焊点交界处为应变集中区域.分析探讨了Sn3.8Ag0.7Cu,Sn9Zn,Sn63Pb37三种钎料的模拟结果,焊点的应变曲线图显示,Sn63Pb37钎料焊点的等效应变最大,Sn9Zn钎料居中,Sn3.8Ag0.7Cu焊点的等效应变最小,表明Sn3.8Ag0.7Cu替代Sn63Pb37作为微元器件组装的组装材料具有更好的焊点力学性能.通过分析QFP64和QFP208两种器件焊点应力曲线图可以看出,QFP208器件焊点的应力值小于QFP64器件焊点的应力值,从而具有更高的可靠性.  相似文献   

12.
丁颖  申坤  张冉 《焊接学报》2011,32(8):65-68
分别采用62Sn36Pb2Ag钎料和63Sn37Pb共晶钎料焊接AgCu合金块和CuBe合金片进行试验,对比分析两种钎料形成的焊缝性能和显微组织结构,阐述了62Sn36Pb2Ag钎料中Ag元素的存在对AgCu/SnPbAg/CuBe焊缝性能的影响机制.结果表明,62Sn36Pb2Ag钎料中的Ag元素对于润湿铺展状态的改...  相似文献   

13.
本文运用溶胶-凝胶燃烧法合成了双钙钛矿型LaNixCo1-xO3(LNCO)纳米材料,利用粉末冶金和热挤压技术制备了相应的Ag/LNCO触点材料及元件样品。重点考察了不同Ni、Co含量对Ag/LNCO触点材料微观结构、物相组成、物理性能、力学性能及电寿命服役能力的影响,对其电弧侵蚀失效行为进行了研究,并与SnO2粉体增强Ag基触点材料进行对比。结果表明:溶胶凝胶法合成的LNCO纳米颗粒粒径为20-30 nm,经粉末冶金工艺制备的Ag/LaNi0.5Co0.5O3触点材料电学性能和电寿命都优于Ag/SnO2触点材料,其电阻率低至2.10 μΩ?cm,电寿命性能达到51287次。表明Ag/LaNi0.5Co0.5O3触点材料性能较佳,是一种可以取代Ag/CdO的新型触点材料。  相似文献   

14.
Ag/SnO2-La2O3-Bi2O3触头材料的研究   总被引:4,自引:0,他引:4  
采用粉末冶金方法制备了新型银-稀土氧化物触头材料Ag/SnO2-La2O3-Bi2O3。利用扫描电镜(SEM)及能谱分析(EDS),对Ag/SnO2-La2O3-Bi2O3触头材料的显微组织进行了分析,并对其进行了通断能力、温升及侵蚀量的实验。新型材料Ag/SnO2-La2O3-Bi2O3通过了通断能力实验,与Ag/CdO相比平均温升相近,但侵蚀量仅约为Ag/CdO的2/3。由实验结果可知,此材料具有较好的物理、机械、电气性能及较低的成本,具有很好的应用前景和经济效益,有望成为一种可替代Ag/CdO的无毒新型触头材料。  相似文献   

15.
利用Sn0.3Ag0.7Cu-4%Ti金属化涂料,在金属化温度900℃、保温时间30 min条件下,对Al2O3陶瓷表面进行金属化处理,然后在钎焊温度600℃、保温时间5 min条件下,利用Sn0.3Ag0.7Cu钎料实现Al2O3陶瓷与紫铜的间接钎焊,通过SEM,EDS和XRD等分析测试手段对金属化层显微组织、Al2O3陶瓷/铜接头结合强度和接头断口形貌等进行了分析.结果表明,利用金属化方法得到了均匀且与Al2O3陶瓷结合良好的金属化层,并实现了Al2O3陶瓷与铜的间接连接,接头界面结构为Cu/Cu3Sn/Cu6Sn5/Sn(s,s)+Ti6Sn5/Al2O3陶瓷.钎焊接头抗剪强度为13.6 MPa,接头断裂发生于金属间化合物层.  相似文献   

16.
使用反应合成法制备了Ag/SnO2材料,考察了Ag/Sn2材料在大塑性变形过程中的组织均匀化及性能变化情况.经SEM分析表明,随挤压真应变的增加,类纤维状组织逐渐消失,Sn2颗粒分布由团聚逐渐均匀分布;经电导率、抗拉强度、延伸率测试分析表明和再结晶晶粒尺寸,材料经过大塑性变形后性能得到了极大的改善;对经过不同真应变挤压后的触点测试,发现触点的质量损耗减小.  相似文献   

17.
本文采用化学共沉淀法合成了La2Sn2O7/SnO2复合粉体,并通过粉末冶金法制备了Ag-La2Sn2O7/SnO2电接触材料;研究了复合材料的抗电弧侵蚀性能,并对抗电弧侵蚀机理进行了探讨。结果表明:与Ag-SnO2相比,Ag-La2Sn2O7/SnO2电接触材料经电弧作用后表面形貌较为平整,表现出较低的熔焊力。这可能是由于在电弧作用下La2Sn2O7的存在有助于提高熔池的粘度,同时Ag-La2Sn2O7/SnO2触点表面分布的“小汗珠”状颗粒物能够起到分散电弧能量的作用,从而可以降低侵蚀区域的温升、减小熔焊力,表现出较好的抗熔焊性能。 Ag-La2Sn2O7/SnO2有望作为一种环保型电接触材料得到广泛应用。  相似文献   

18.
研究Sn Ag Cu Fe焊点的本构方程,采用拉伸测试拟合本构模型的9个参数。基于有限元模拟应用Anand模型分析WLCSP30器件Sn Ag Cu Fe焊点的应力-应变响应。结果表明,器件最大应力集中在拐角焊点上表面,Sn Ag Cu Fe焊点应力值明显小于Sn Ag Cu焊点。基于疲劳寿命预测模型,证实微量的Fe可以显著提高Sn Ag Cu焊点疲劳寿命,因此Sn Ag Cu Fe可以替代传统的Sn Pb应用于电子封装。  相似文献   

19.
崔海虎 《铸造技术》2015,(1):198-200
以Sn3.0Ag0.5Cu焊接材料为研究对象,分析了Sn3.0Ag0.5Cu焊接材料与基体间IMC层的微观结构,探索了IMC微结构对焊锡接点断裂模式和拉伸强度的影响。结果表明,Sn3.0Ag0.5Cu/Cu界面是由IMC层、Sn3.0Ag0.5Cu焊料和Cu基体3部分组成。EDS定性分析了界面处的组织成分,发现有金属间化合物Cu3Sn和Cu6Sn5的存在。焊锡接点的断裂方式随着时效时间的延长,逐渐由韧性断裂转换为脆性断裂,拉伸强度并不是处于一直降低的状态,出现了一个小波动。  相似文献   

20.
王松  陈家林  郑婷婷  张吉明  王塞北  谢明 《贵金属》2015,36(4):32-36, 44
分别采用粉末冶金法和内氧化法制备了AgSnO_2(12)电接触材料,研究了制备工艺对AgSnO_2电接触材料微观组织、物理性能、加工性能和抗电弧侵蚀性能的影响。结果表明,内氧化法制备的AgSnO_2电接触材料组织致密、SnO_2颗粒在Ag基体内分布均匀,其显微硬度(Hv0.2)为109,抗拉强度为254 MPa,断后伸长率为18%。与粉末冶金法相比,内氧化法制得的AgSnO_2电接触材料具有更好的加工性能和抗电弧侵蚀性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号