首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 93 毫秒
1.
粒子群优化算法的改进   总被引:1,自引:1,他引:1       下载免费PDF全文
针对粒子群优化算法搜索精度不高、对高维函数优化性能不佳的问题,提出一种改进的粒子群优化算法。以递增方式对粒子进行释放增强可利用的种群信息,通过释放粒子引导极值变化加强算法的运算效率。实验结果表明,与其他算法相比,改进算法具有更强的寻优能力和搜索精度,且适于高维复杂函数的优化。  相似文献   

2.
梁军  程灿 《计算机工程与设计》2008,29(11):2893-2896
针对基本粒子群优化算法(PSO)易陷入局部极值点,进化后期收敛慢,精度较差等缺点,提出了一种改进的粒子群优化算法.该算法用一种无约束条件的随机变异操作代替速度公式中的惯性部分,并且使邻居最优粒子有条件地对粒子行为产生影响,提高了粒子间的多样性差异,从而改善了算法能力.通过与其它算法的对比实验表明,该算法能够有效地进行全局和局部搜索,在收敛速度和收敛精度上都有显著提高.  相似文献   

3.
复形法粒子群优化算法研究   总被引:1,自引:1,他引:0  
针对基本粒子群优化算法对复杂函数优化时难以获得最优解的缺陷,提出了一种复形粒子群优化算法。该算法采用复形法来提高粒子的局部搜索能力,从而保证了算法能够跳出局部最优,获得全局最优解。实验结果表明,与文献算法相比,该算法在基准函数优化时具有更强的寻优能力和更高的搜索精度。  相似文献   

4.
《微型机与应用》2014,(15):72-75
提出了一种改进的多群协作粒子群优化算法,该算法整个种群采用主从模式,分为一个主群和多个从群,多个从群粒子统一地进行初始化操作,从而避免了多个粒子群重复搜索现象。同时,算法采取了一种扰动策略,即当前全局最优解在扰动因子的迭代周期内保持不变时,就重置粒子的速度,迫使粒子群摆脱局部极小。该算法不仅增加了种群的多样性,扩大了搜索范围,而且还改善整个种群易陷入局部极小值的缺陷。通过9个基准函数进行测试,实验结果表明,IMCPSO与MCPSO算法相比具有明显的优越性。  相似文献   

5.
粒子群优化算法是根据鸟群觅食过程中的迁徙和群集模型而提出的,用于解决优化问题的一类新兴的随机优化算法。本文首先介绍PSO算法的基本原理和工作机制;然后介绍粒子群优化算法的优化策略,包括提高收敛速度﹑算法离散化﹑提高总群多样性;最后对其将来的发展进行了展望。  相似文献   

6.
分合粒子群优化算法*   总被引:1,自引:0,他引:1  
基于社会系统中普遍存在“分久必合,合久必分”的现象,提出了基于分合思想的粒子群优化算法。分策略提高了演化群体的多样性,克服了粒子群优化算法局部收敛的缺陷。合策略吸取了不同群体的优良特性,提高了算法的全局搜索能力。函数优化的仿真结果证明了算法的有效性。  相似文献   

7.
粒子群优化算法的研究进展   总被引:3,自引:0,他引:3  
粒子群优化算法是一类新兴的基于群智能的随机优化算法,同其它的进化算法相比,其最具吸引人的特征是简单容易实现和更强的全局优化能力。本文介绍了PSO算法的研究现状,并讨论了PSO将来的研究方向。  相似文献   

8.
王勇  张伟  陈军  韦鹏程 《计算机科学》2009,36(8):258-259
提出一种新的粒子群优化(Particle Swarm Optimization,PSO)算法,将微调(Fine-Tuning)机制导入PSO算法中,可提高算法在最优区域局部搜寻的能力,改善PSO在搜寻末期,粒子相似度过高的缺陷.最后用2种不同复杂程度的函数为例,比较本算法与PSO算法的最优化能力.结果显示,本算法在搜寻成功率及平均收敛时间、平均收敛代数的性能表现上皆优于PSO算法.  相似文献   

9.
粒子群优化算法   总被引:131,自引:16,他引:131  
粒子群优化(PSO)算法是一类随机全局优化技术,PSO算法通过粒子间的相互作用发现复杂搜索空间中的最优区域。PSO的优势在于简单容易实现而又功能强大。PSO已成为国际演化计算界研究的热点。该文介绍了基本的PSO算法、若干类改进的PSO算法及其应用,并讨论将来可能的研究内容。  相似文献   

10.
新型分阶段粒子群优化算法   总被引:1,自引:0,他引:1       下载免费PDF全文
针对粒子群优化算法的“早熟”问题,提出了一种新型分阶段粒子群优化算法。该算法通过调整惯性权重和加速系数使粒子自组织地跟踪局部吸引域和全局吸引域来扩大粒子的搜索空间和提高粒子的收敛精度,同时根据粒子处于不同的阶段实施相应的变异策略来增加种群的多样性。通过经典函数的测试结果表明,新算法的全局搜索能力有了显著提高,并且能够有效避免早熟问题。  相似文献   

11.
新型的动态粒子群优化算法   总被引:2,自引:0,他引:2       下载免费PDF全文
为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。  相似文献   

12.
混沌粒子群优化算法   总被引:12,自引:1,他引:12  
将混沌融入到传统粒子群提出了混沌粒子群算法。该方法利用了混沌运动的遍历性、随机性以及对初值的敏感性等特性,根据早熟判断机制,在基本粒子群算法陷入早熟时,进行群体的混沌搜索.数值仿真结果表明该方法能跳出局部最优,进一步提高了计算精度和收敛速度,以及全局寻优能力。  相似文献   

13.
提出了一种基于动态粒子群优化的网格任务调度算法。设计了网格任务调度问题的数学模型,给出了自适应变异的动态粒子群优化算法的框架,引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。实验结果表明,本文算法能有效地解决异构网格任务调度问题,具有较好的应用价值。  相似文献   

14.
针对目前多峰函数优化问题较难找到全部局部最优解的情况,提出了一种粒子群Memetic算法。算法结合了粒子群优化的全局搜索能力和爬山法的局部搜索能力,增强了算法搜索最优解的能力。实验结果表明,该算法求解精度较高,且收敛速度较快。  相似文献   

15.
K-均值算法是广泛使用的聚类算法,但该算法的聚类数目难以确定,且聚类结果对初始聚类中心比较敏感.本文提出一种基于微粒群优化聚类数目的K-均值算法,该算法采用聚类中心的坐标和通配符表示微粒位置,通过定义微粒更新公式中新的加减运算符,动态调整聚类中心的数目及坐标,此外,以改进的聚类有效性指标Davies-Bouldin准则作为适应度函数.5个人工和真实数据集的聚类结果验证了所提算法的优越性.  相似文献   

16.
一种改进的粒子群算法   总被引:1,自引:0,他引:1       下载免费PDF全文
为了改进基本粒子群算法的搜索功能,针对粒子群算法易于陷入局部极值,进化后期的收敛速度慢和精度低等缺点,通过公式分析得到新的惯性权重调节方法,提出了一种新的改进粒子群算法。用几个经典测试函数进行实验,实验结果表明,新算法不仅具有更好的收敛精度,而且能更有效地进行全局搜索。  相似文献   

17.
提出一种新的约束优化粒子群算法。该算法采用非固定多段映射罚函数法处理约束条件。在进化过程中,利用混沌序列初始化种群,选取最优粒子进行局部一维搜索,增强了在最优点附近的局部搜索能力,以加快算法的收敛速度;引入维变异方法保持种群的多样性。数值实验结果表明了该算法的有效性。  相似文献   

18.
分析了粒子群算法的惯性部分、个体认知部分和群体认知部分的作用,对粒子群算法迭代方程的各部分进行变形,获得了三种新形式的粒子群算法。用算例说明所得到的三个新的粒子群算法具有较好的优化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号