首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a diamond cutting tool in the precision turning process, the vibration of tool-tip has an undesirable effect on the machined surface??s quality. The objective of this paper is to present the mathematical models for modeling and analyzing the vibration and surface roughness in the precision turning with a diamond cutting tool. Machining parameters including the spindle speed, feed rate and cutting depth were chosen as numerical factor, and the status of lubrication was regarded as the categorical factor. An experimental plan of a four-factor??s (three numerical plus one categorical) D-optimal design based on the response surface methodology was employed to carry out the experimental study. A micro-cutting test is conducted to visualize the effect of vibration of tool-tip on the performance of surface roughness. With the experimental values up to a 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of the vibration and surface roughness. Results show that the spindle speed and the feed rate have the greatest influence on the longitudinal vibration amplitude, and the feed rate and the cutting depth play major roles for the transverse vibration amplitude. As the spindle speed increases, the overall vibration of tool-tip tends to more stable condition which leads to the results of the best machined surface. The effects of the feed rate and cutting depth provide the reinforcement on the overall vibration to cause the unstability of cutting process and exhibit the result of the worst machined surface.  相似文献   

2.
This paper aims at developing a statistical model to envisage vibration amplitude in terms of geometrical parameters such as radial rake angle, nose radius of cutting tool and machining parameters such as cutting speed, cutting feed and axial depth of cut. Experiments were conducted through response surface methodology experimental design. The material chosen is Aluminum (Al 7075-T6) and the tool used was high speed steel end mill cutter with different tool geometry. Two channels piezoelectric accelerometers were used to measure the vibration amplitude. The second order mathematical model in terms of machining parameters was built up to predict the vibration amplitude and ANOVA was used to verify the competency of the model. Further investigation on the direct and interactive effect of the process parameter with vibration amplitude was carried out for the selection of process parameter so that the vibration amplitude was maintained at the minimum which ensures the stability of end milling process. The optimum values obtained from end milling process are Radial rake angle-12°, Nose radius-0.8 mm, Cutting speed-115 m/min, Cutting feed rate-0.04 mm/tooth, axial depth of cut-2.5 mm. The vibration amplitude exhibited negative relationship with radial rake angle and nose radius. The dominant factors on the vibration amplitude are feed rate and depth of cut. Thus it is envisaged that the predictive models in this study could produce values of the vibration amplitude close to the experimental readings with a 95% confidence interval.  相似文献   

3.
In this paper, by analysing the axial cutting thickness and the cutting graphics, a new concept of cutting ratio K in vibration drilling is introduced for the first time. Cutting ratio K can show the proportion of cutting time in a cutting cycle and describe the working condition of the drilling during the vibration drilling. The relationship between cutting parameters and vibration parameters are denoted as two parameters, ωf and E. By computer program, the relationships between K and ωf is found; their characteristic are periodicity, symmetry and having many peak values. The curves, which describe the relation between K and E, are digressive. The regularity can be used to optimise the parameters in vibration drilling to achieve good machine performance. The experiment results indicate that the thrust, torque and the drill life are related to cutting ratio K.  相似文献   

4.
基于再生振动和刀具偏心对立铣加工过程的影响,建立了改进的动态切削力和切削厚度的非线性数学模型;利用计算机仿真技术,定量分析了上述因素对铣削加工振动和工件三维表面形貌的综合影响。结果表明:考虑再生振动和刀具偏心的综合影响,可使铣削振动的预测精度较未考虑这两个因素时平均提高20%以上,使加工振动状态更接近实际加工情况。  相似文献   

5.
The vibrations on the cutting tool have a momentous influence for the surface quality of workpiece with respect to surface profile and roughness during the precision end-milling process. Singular spectrum analysis (SSA) is a new non-parametric technique of time series analysis and forecasting. The significant features of the cutting tool vibration signals from the sensors are extracted and transformed from the SSA-processed vibration signals. In the present study, SSA is applied to extract and transform the raw signals of the vibrations on the cutting tool for investigating the relationship between tool vibration and surface roughness in the precision end-milling process of hardened steel SCM440. In this experimental investigation, the spindle speed, feed rate, and cutting depth were chosen as the numerical factor; the cutting feed direction and holder type were regarded as the categorical factor. An experimental plan consisting of five-factor (three numerical plus two categorical) d-optimal design based on the response surface methodology was employed to carry out the experimental study. A micro-cutting test was conducted to visualize the effect of vibration of tooltip on the performance of surface roughness. With the experimental values up to 95% confidence interval, it is fairly well for the experimental results to present the mathematical models of the tool vibration and surface roughness. Results show that the effects of feed rate and cutting depth provide the reinforcement on the overall vibration to cause the unstable cutting process and exhibit the result of the worst machined surface. The amplitude of vibration signals along the cutting feed direction is generally larger than that along other direction. The spindle speed and tool holder type affect the stability of cutting tooltip during the cutting process.  相似文献   

6.
This paper summarizes the results of thermal finite element simulation and experimental studies of tool temperature in ultrasonic-assisted turning (UAT) of aerospace aluminum using multicoated carbide inserts. At first, mathematical models were developed in order to study the effects of tool coating, rake angle, cutting speed, and feed rate on the friction coefficient. Then with respect to the kinematics of the process, the cutting velocity model would be presented. This velocity model is used in combination with the mathematical model to define the friction coefficient during UAT. The mentioned frictional model is used to write a user subroutine to incorporate the effect of friction coefficient as a function of cutting parameters in the finite element program Abaqus. The results of this simulation make it possible to determine cutting temperature patterns accurately. It is also used to study the effect of cutting parameters (cutting speed, feed rate, rake angle, and vibration amplitude) on UAT. Finally, the simulation results are compared with experimental measurements of cutting temperatures from ultrasonic-assisted turning tests. The results show that ultrasonic-assisted turning is able to lower the maximum cutting temperature in cutting tool, about 29 %, in low feed rates (≈0.14 mm/rev), with a vibration amplitude of ≈10 μm and work velocity of ≈0.5 m/s.  相似文献   

7.
介绍了一种在线估算螺杆数控铣削中刀具磨损量的新方法。该方法基于螺杆铣削过程变切削参数的工况,提取了振动信号和功率信号的刀具磨损特征值,基于自适应神经—模糊推理系统建立了刀具磨损数学模型。实验证明,由此建立的刀具磨损模型能够排除切削参数变化的干扰,可以较好的反映加工中刀具磨损状态,同时也为具有时变切削参数特性的加工过程刀具磨损状态监控提供了新的研究方法。  相似文献   

8.
高温合金振动钻削断屑实验研究及机理分析   总被引:1,自引:0,他引:1  
高兴军  邹平 《工具技术》2010,44(12):7-9
对振动钻削理论进行了分析,建立了振动钻削时断屑的数学模型,利用自制的振动钻削实验装置,采用不同的振动钻削参数进行高温合金振动钻削试验,对轴向振动钻削的断屑效果以及轴向钻削力和扭矩进行了研究,分析了各加工参数对加工过程的影响,发现振动钻削力随钻削参数的变化比较平稳,在大进给量或高转速状态下,振动钻削的钻削力比普通钻削力小得多。通过比较振动钻削与普通钻削所得切屑可知:振动钻削有利于断屑,切屑体积小,排屑顺畅。  相似文献   

9.
刘平田 《工具技术》2017,51(1):31-36
基于超声振动切削中的关键参数振幅、振动频率和切削速度,针对如何确定其最优值的问题,以典型的难加工材料不锈钢作为研究对象,利用ABAQUS建立有限元模型,通过数学模型和试验数据验证有限元模型的准确性,并结合优化软件ISIGHT进行联合优化,采用全局优化中的Evol进化优化算法得到超声加工中的最优刀具参数和最优切削参数。  相似文献   

10.
As a new technology in manufacturing, turn-milling broadens the application ranges of mechanical processing, wherein both cutting tool and workpiece are given a rotary motion simultaneously. The objective of the present work is to study workpiece surface topography during orthogonal turn-milling process. This study begins with two mathematical models, which describe theoretical surface roughness and topography of rotationally symmetrical workpiece. The models are built with the establishment of locus function according to orthogonal turn-milling principle. Then based on these models, the influence law of surface topography affected by various cutting parameters is found by some simulation methods. The law also matches with orthogonal turn-milling surface roughness and topography experiments. By analyzing the experimental results, some parameter selection criteria during orthogonal turn-milling processing are also proposed qualitatively and quantitatively. The comparison between the simulation and experimental results shows that a better surface quality and tiny oil storage structure can be obtained if the cutting parameters are chosen in reason. This conclusion provides a theoretical foundation and reference for the orthogonal turn-milling mechanism research.  相似文献   

11.
针对未考虑正偏心正交车铣切削层几何形状而导致难以全面反映正交车铣切削层几何形状变化规律的问题,基于正交车铣运动规律,在不考虑动力学影响的情况下,对切削层的形成过程进行了静态分析。建立的正偏心正交车铣切削层几何形状的解析模型涉及铣刀侧刃和底刃的切入/切出角度、切削厚度和切削深度。通过试验验证了该解析模型的正确性,并分析了切削参数对铣刀切削层的影响。研究结果为正偏心正交车铣切削层几何形状的变化提供了定量的分析依据,为切削力和颤振的研究提供了理论指导。  相似文献   

12.
The effect of the cutting parameters on performance of WEDM   总被引:1,自引:0,他引:1  
In this study, variations of cutting performance with pulse time, open circuit voltage, wire speed and dielectric fluid pressure were experimentally investigated in Wire Electrical Discharge Machining (WEDM) process. Brass wire with 0.25 mm diameter and AISI 4140 steel with 10 mm thickness were used as tool and work materials in the experiments. The cutting performance outputs considered in this study were surface roughness and cutting speed. It is found experimentally that increasing pulse time, open circuit voltage, wire speed and dielectric fluid pressure increase the surface roughness and cutting speed. The variation of cutting speed and surface roughness with cutting parameters is modeled by using a regression analysis method. Then, for WEDM with multi-cutting performance outputs, an optimization work is performed using this mathematical models. In addition, the importance of the cutting parameters on the cutting performance outputs is determined by using the variance analysis (ANOVA).  相似文献   

13.
Nowadays, the availability of reliable mathematical models of machining system dynamics is a key issue for achieving high quality standards in precision machining. Dynamic models can indeed be applied for tooling system design, preventive evaluation of cutting process stability and optimization of cutting parameters. This is of particular concern in internal turning, where the cutting process is greatly affected by the compliance of the tooling system. In this paper, an innovative hybrid dynamic model of the tooling system in internal turning, based on FE beams and empirical models, is presented. The model was based on physical and geometrical assumptions and it was refined by using experimental observations derived from modal testing of boring bars with different geometries and made of different materials, i.e. alloy steel and high-damping carbide. The predicted modal parameters of the tooling system (tool tip static compliance, natural frequency and damping coefficient of the dominant mode) are in good accordance with experimental values.  相似文献   

14.
为了深入揭示振动切削中切削裂纹萌生和成屑机理,建立并调试了低频振动切削实验系统;采用计算机控制的压电陶瓷为驱动元件的微驱动刀架,作为振动源,用SDC系列测力仪对切削力进行测量,由反馈信号测量系统得到真实刀尖的运动参数,便于修正理论给定参数值;进行相同刀具几何参数条件下的低频振动切削实验和普通切削实验,得出不同振动频率、不同切削速度对切削过程和结果(切削力、已加工工件表面)的影响,并与相同切削用量条件下普通切削实验相比较。  相似文献   

15.
In the present investigation an attempt is made to evaluate the effect of certain cutting variables on cutting forces in straight turning of aluminum metal matrix composites under dry cutting condition. Cutting speed, depth of cut and weight percentage of SiCP are selected as the influencing parameters. The application of response surface methodology and face centered composite design for modeling, optimization, and an analysis of the influences of dominant cutting parameters on tangential cutting force, axial cutting force and radial cutting force of aluminum metal matrix composites produced through stir casting route. Experiments are carried out using aluminum (LM6) alloy reinforced with silicon carbide particles. The mathematical models are developed and tested for adequacy using analysis of variance and other adequacy measures using the developed models. The predicted values and measured values are fairly close, which indicate that the developed models can be effectively used to predict the responses in the turning of aluminum metal matrix composites. The contour plots of the process parameters revel that the low cutting forces are associated with the lowest level of depth of cut and the highest level of cutting speed and the sensitivity analysis revealed that cutting speed is most significant factor influencing the response variables investigated.  相似文献   

16.
切削振动对零件加工表面质量影响较大,为了控制切削振动,提高加工表面质量,利用正交试验进行不同工艺条件下的铣削试验,采集振动信号并提取信号特征值,通过方差分析等方法研究铣削参数和刀具磨损对铣削振动的影响规律,确定影响铣削振动的显著因素,为切削振动控制研究及铣削工艺参数的合理选择提供理论参考。  相似文献   

17.
振动钻削特殊的切削机理能显著降低钻削过程中的切削力。通过分析振动钻削过程中的钻头运动,推导了钻头在切削过程中所受轴向平均切削力的理论计算公式,并据此对振动钻削过程中切削参数和振动参数对轴向平均切削力的影响进行了定性分析。  相似文献   

18.
高速铣削时颤振的诊断和稳定加工区域的预报   总被引:2,自引:0,他引:2  
给出一种通过测量加工过程中的噪声来诊断高速铣削时颤振的方法.先测量环境噪声,然后测量加工噪声.理论分析和试验结果表明,如果加工噪声的主谐振频率接近其中一个环境噪声主谐振频率或者是齿频的整数倍,那么系统无颤振,否则有颤振.建立系统结构和铣削过程动力学特征参数的数学模型.根据测出的颤振频率,通过所建模型可解出系统的固有频率、阻尼比和过程参数,并计算出稳定极限曲线.试验证明,该方法能较好地预报高速铣削时的稳定加工区域.  相似文献   

19.
离合器式螺旋压力机的振动与隔振分析   总被引:1,自引:0,他引:1  
分析了离合器式螺旋压力机的打击过程,认为运动部分的惯性力和惯性力矩不封闭于机身,是激起机身及其基础垂向振动和扭转振动的原因,提出了相应的振动计算数学模型,对亚洲最大的离合器式螺旋压力机进行了振动测试,结果表明,提出的计算模型正确,具有工程上的应用价值,可作为离合器式螺旋压力机振动分析及隔振设计的依据。  相似文献   

20.
Decreasing vibration amplitude during end milling process reduces tool wear and improves surface finish. Mathematical model has been developed to predict the acceleration amplitude of vibration in terms of machining parameters such as helix angle of cutting tool, spindle speed, feed rate, and axial and radial depth of cut. Central composite rotatable second-order response surface methodology was employed to create a mathematical model, and the adequacy of the model was verified using analysis of variance. The experiments were conducted on aluminum Al 6063 by high-speed steel end mill cutter, and acceleration amplitude was measured using FFT analyzer. The direct and interaction effect of the machining parameter with vibration amplitude were analyzed, which helped to select process parameter in order to reduce vibration, which ensures quality of milling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号